topic badge
India
Class XI

Square roots of Complex Numbers

Lesson

To find the square root of a complex number, we equate it with a generic complex number $a+bi$a+bi and then complete some algebraic manipulation to solve. 

Example 1

Find the square root of $-8+6i$8+6i.

Let $\sqrt{-8+6i}=a+bi$8+6i=a+bi

$-8+6i$8+6i $=$= $\left(a+bi\right)^2$(a+bi)2
$-8+6i$8+6i $=$= $a^2-b^2+i\left(2ab\right)$a2b2+i(2ab)
    equating like parts
$a^2-b^2$a2b2 $=$= $-8$8
    and
$2ab$2ab $=$= $6$6
$b$b $=$= $\frac{3}{a}$3a
    use this
$a^2-b^2$a2b2 $=$= $-8$8
$a^2-\left(\frac{3}{a}\right)^2$a2(3a)2 $=$= $-8$8
$a^2-\frac{9}{a^2}$a29a2 $=$= $-8$8
$a^4-9$a49 $=$= $-8a^2$8a2
$a^4+8a^2-9$a4+8a29 $=$= $0$0
$\left(a^2+9\right)\left(a^2-1\right)$(a2+9)(a21) $=$= $0$0
From this we have that either    
$a^2+9$a2+9 $=$= $0$0
$a^2$a2 $=$= $\pm\sqrt{-9}$±9

$a=\pm3i$a=±3i but by definition of the complex number $z=a+bi$z=a+bi, both $a$a and $b$b are ∈ ℝ. So we can discount this answer. 

Now to look at the other possibility

$a^2-1$a21 $=$= $0$0
$a^2$a2 $=$= $\pm\sqrt{1}$±1
$a$a $=$= $\pm1$±1

If $a=1$a=1, then 

$b=\frac{3}{a}=\frac{3}{1}=3$b=3a=31=3

So, $\sqrt{-8+6i}=1+3i$8+6i=1+3i

What happened to the other entry?  Where $a=-1$a=1.  

Well the convention is that the sign $\pm$± of $Re\left(\sqrt{z}\right)$Re(z) is the sign that we use for $Re(z)$Re(z)

Outcomes

11.A.CNQE.1

Need for complex numbers, especially √-1, to be motivated by inability to solve every quadratic equation. Brief description of algebraic properties of complex numbers. Argand plane and polar representation of complex numbers. Statement of Fundamental Theorem of Algebra, solution of quadratic equations in the complex number system.

What is Mathspace

About Mathspace