topic badge
India
Class XI

Rays and Lines in the Complex Plane

Lesson

Here we are going to cover some basics of sketching in the complex plane. 

$\left\{z:arg\left(z\right)=\theta\right\}${z:arg(z)=θ} is a ray starting at origin with an angle of $\theta$θ with the positive real axis.

 

$\left\{z:arg\left(z+a+bi\right)=\theta\right\}${z:arg(z+a+bi)=θ} is a ray with an angle of $\theta$θ with the positive real axis translated from the origin a units in real direction and $b$b units in the imaginary direction. 

 

$\left\{z:Re\left(z\right)=a\right\}${z:Re(z)=a} for $a$a ∈ ℝ is a vertical line through $x=a$x=a.

$\left\{z:Re\left(z+a+bi\right)=c\right\}${z:Re(z+a+bi)=c} for $a,b,c$a,b,c ∈ ℝ is a vertical line translated ($-a$a) in the Real direction and ($-b$b) in the Imaginary direction. Since this graph is a vertical line the imaginary translation is irrelevant. This is a vertical line passing through $\left(c-a\right)+0i$(ca)+0i

 

$\left\{z:Im\left(z\right)=c\right\}${z:Im(z)=c} for $c$c ∈ ℝ is a horizontal line through $y=c$y=c.

 

$\left\{z:Im\left(z+a+bi\right)=c\right\}${z:Im(z+a+bi)=c} for $a,b,c$a,b,c ∈ ℝ is a horizontal line translated ($-a$a) in the Real direction and ($-b$b) in the Imaginary direction. Since this graph is a horizontal line the imaginary real component is irrelevant. This is a horizontal line passing through $0+\left(c-b\right)i$0+(cb)i

 

If $z=x+iy$z=x+iy, then $z+a+bi=c$z+a+bi=c becomes $x+iy+a+bi=c$x+iy+a+bi=c, which is $\left[x+a\right]+\left[y+bi\right]=c$[x+a]+[y+bi]=c. So then if we want $Re\left(z+a+bi\right)=c$Re(z+a+bi)=c then we just look at $x+a=c$x+a=c, and if we wanted the $Im\left(z+a+bi\right)=c$Im(z+a+bi)=c then we just look at $y+b=c$y+b=c.

Worked examples

Example 1

Sketch $6=Re\left[\left(2-3i\right)z\right]$6=Re[(23i)z]

First we let $z=x+iy$z=x+iy

Then

$\left(2-3i\right)z$(23i)z $=$= $\left(2-3i\right)\left(x+iy\right)$(23i)(x+iy)
  $=$= $2x-3ix+2iy+3y$2x3ix+2iy+3y
  $=$= $\left(2x+3y\right)+\left(2x-3x\right)i$(2x+3y)+(2x3x)i

 

So, when we want to sketch $6=Re\left[\left(2-3i\right)z\right]$6=Re[(23i)z], (the REAL COMPONENT), we need only look at the real component of $\left(2x+3y\right)+\left(2x-3x\right)i$(2x+3y)+(2x3x)i, which is $\left(2x+3y\right)$(2x+3y).

$Re\left[\left(2-3i\right)z\right]=6$Re[(23i)z]=6 is 

$\left(2x+3y\right)=6$(2x+3y)=6

 

Example 2

Sketch $-2=Im\left[\left(4+2i\right)z\right]$2=Im[(4+2i)z]

Let

$z=x+iy$z=x+iy, then 

$\left(4+2i\right)z$(4+2i)z $=$= $\left(4+2i\right)\left(x+iy\right)$(4+2i)(x+iy)
$=$= $4x+2ix+4iy-2y$4x+2ix+4iy2y
$=$= $\left(4x-2y\right)+\left(2x+4y\right)i$(4x2y)+(2x+4y)i

So, when we want to sketch $-2=Im\left[\left(4+2i\right)z\right]$2=Im[(4+2i)z], (the IMAGINARY COMPONENT), we need only look at the imaginary component of $\left(4x-2y\right)+\left(2x+4y\right)i$(4x2y)+(2x+4y)i, which is $\left(2x+4y\right)$(2x+4y).

$Im\left[\left(4+2i\right)z\right]=-2$Im[(4+2i)z]=2 is 

$\left(2x+4y\right)=-2$(2x+4y)=2

 

Have a play with this applet, it will allow you to sketch a variety of lines on the complex plane. 

 

Example 3

Sketch

$28=Im\left[\left(9-i\right)z-5\left(2+2i\right)z\right]$28=Im[(9i)z5(2+2i)z]

Let $z=x+iy$z=x+iy

$\left(9-i\right)z-5\left(2+2i\right)z$(9i)z5(2+2i)z $=$= $\left(9-i\right)\left(x+iy\right)-5\left(2+2i\right)\left(x+iy\right)$(9i)(x+iy)5(2+2i)(x+iy)
  $=$= $9x+9iy-ix+y-5\left(2x+2ix+2iy-2y\right)$9x+9iyix+y5(2x+2ix+2iy2y)
  $=$= $9x+9iy-ix+y-10x+10ix+10iy-10y$9x+9iyix+y10x+10ix+10iy10y
  $=$= $9x-10x+y-10y-ix+10ix+10iy+9iy$9x10x+y10yix+10ix+10iy+9iy
  $=$= $\left(-x-9y\right)+\left(-11x-19y\right)i$(x9y)+(11x19y)i

So to sketch, we are only interested in the imaginary component, 

$-11x-19y=28$11x19y=28

Outcomes

11.A.CNQE.1

Need for complex numbers, especially √-1, to be motivated by inability to solve every quadratic equation. Brief description of algebraic properties of complex numbers. Argand plane and polar representation of complex numbers. Statement of Fundamental Theorem of Algebra, solution of quadratic equations in the complex number system.

What is Mathspace

About Mathspace