topic badge
India
Class XI

Complex Equations

Lesson

If two complex numbers are equal then the real and imaginary parts are also equal. We call this equating like parts

Example 1

If $a+6i=3+6i$a+6i=3+6i, then $a=3$a=3

If $8-bi=8+7i$8bi=8+7i, then $b=-7$b=7

 

We can use this process to solve algebraic problems involving complex numbers.

Example 2

Find $x,y$x,y if $\left(3+2i\right)^2-3\left(x+iy\right)=x+iy$(3+2i)23(x+iy)=x+iy

  $\left(3+2i\right)^2-3\left(x+iy\right)$(3+2i)23(x+iy) $=$= $x+iy$x+iy
  $9+12i-4-3x-3yi$9+12i43x3yi $=$= $x+iy$x+iy
                                                             $5-3x+12i-3yi$53x+12i3yi $=$= $x+iy$x+iy
  $(5-3x)+i(12-3y)$(53x)+i(123y) $=$= $x+iy$x+iy
  Therefore:    
  $5-3x$53x $=$= $x$x
  $5$5 $=$= $4x$4x
  $x$x $=$= $\frac{5}{4}$54
       
  and    
  $12-3y$123y $=$= $y$y
  $12$12 $=$= $4y$4y
  $y$y $=$= $3$3

 

 

 

Example 3

Find $x,y$x,y if $\frac{x}{1-i}+\frac{y}{4+3i}=2-4i$x1i+y4+3i=24i

$\frac{x}{1-i}+\frac{y}{4+3i}$x1i+y4+3i $=$= $2-4i$24i
$\frac{x\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}+\frac{y\left(4-3i\right)}{\left(4+3i\right)\left(4-3i\right)}$x(1+i)(1i)(1+i)+y(43i)(4+3i)(43i) $=$= $2-4i$24i
$\frac{x+xi}{1+1}+\frac{4y-3yi}{16+9}$x+xi1+1+4y3yi16+9 $=$= $2-4i$24i
$\frac{x+xi}{2}+\frac{4y-3yi}{25}$x+xi2+4y3yi25 $=$= $2-4i$24i
$\frac{25x+25xi}{50}+\frac{8y-6yi}{50}$25x+25xi50+8y6yi50 $=$= $2-4i$24i
$25x+25xi+8y-6yi$25x+25xi+8y6yi $=$= $100-200i$100200i
$\left(25x+8y\right)+i\left(25x-6y\right)$(25x+8y)+i(25x6y) $=$= $100-200i$100200i
Therefore    
$25x+8y$25x+8y $=$= $100$100 (1)
$25x-6y$25x6y $=$= $-200$200 (2)

By equating like parts we can then

get simultaneous equations to solve

   
(1)-(2)                                          $14y$14y $=$= $300$300 
$y$y $=$= $\frac{300}{14}$30014
       Sub $y=\frac{300}{14}$y=30014 into (1)                         $25x+8\times\frac{300}{14}$25x+8×30014 $=$= $100$100
$25x$25x $=$= $\frac{-500}{7}$5007
$x$x $=$= $-\frac{20}{7}$207

More Worked Examples

QUESTION 1

Given that $5a+12i=10-3bi$5a+12i=103bi:

  1. find the value of $a$a

  2. find the value of $b$b

QUESTION 2

Find the value of $z$z if $\left(z+i\right)\left(3+2i\right)=20-4i$(z+i)(3+2i)=204i.

 

Outcomes

11.A.CNQE.1

Need for complex numbers, especially √-1, to be motivated by inability to solve every quadratic equation. Brief description of algebraic properties of complex numbers. Argand plane and polar representation of complex numbers. Statement of Fundamental Theorem of Algebra, solution of quadratic equations in the complex number system.

What is Mathspace

About Mathspace