If two complex numbers are equal then the real and imaginary parts are also equal. We call this equating like parts.
If $a+6i=3+6i$a+6i=3+6i, then $a=3$a=3
If $8-bi=8+7i$8−bi=8+7i, then $b=-7$b=−7
We can use this process to solve algebraic problems involving complex numbers.
Find $x,y$x,y if $\left(3+2i\right)^2-3\left(x+iy\right)=x+iy$(3+2i)2−3(x+iy)=x+iy
$\left(3+2i\right)^2-3\left(x+iy\right)$(3+2i)2−3(x+iy) | $=$= | $x+iy$x+iy | |
$9+12i-4-3x-3yi$9+12i−4−3x−3yi | $=$= | $x+iy$x+iy | |
$5-3x+12i-3yi$5−3x+12i−3yi | $=$= | $x+iy$x+iy | |
$(5-3x)+i(12-3y)$(5−3x)+i(12−3y) | $=$= | $x+iy$x+iy | |
Therefore: | |||
$5-3x$5−3x | $=$= | $x$x | |
$5$5 | $=$= | $4x$4x | |
$x$x | $=$= | $\frac{5}{4}$54 | |
and | |||
$12-3y$12−3y | $=$= | $y$y | |
$12$12 | $=$= | $4y$4y | |
$y$y | $=$= | $3$3 |
Find $x,y$x,y if $\frac{x}{1-i}+\frac{y}{4+3i}=2-4i$x1−i+y4+3i=2−4i
$\frac{x}{1-i}+\frac{y}{4+3i}$x1−i+y4+3i | $=$= | $2-4i$2−4i |
$\frac{x\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}+\frac{y\left(4-3i\right)}{\left(4+3i\right)\left(4-3i\right)}$x(1+i)(1−i)(1+i)+y(4−3i)(4+3i)(4−3i) | $=$= | $2-4i$2−4i |
$\frac{x+xi}{1+1}+\frac{4y-3yi}{16+9}$x+xi1+1+4y−3yi16+9 | $=$= | $2-4i$2−4i |
$\frac{x+xi}{2}+\frac{4y-3yi}{25}$x+xi2+4y−3yi25 | $=$= | $2-4i$2−4i |
$\frac{25x+25xi}{50}+\frac{8y-6yi}{50}$25x+25xi50+8y−6yi50 | $=$= | $2-4i$2−4i |
$25x+25xi+8y-6yi$25x+25xi+8y−6yi | $=$= | $100-200i$100−200i |
$\left(25x+8y\right)+i\left(25x-6y\right)$(25x+8y)+i(25x−6y) | $=$= | $100-200i$100−200i |
Therefore | ||
$25x+8y$25x+8y | $=$= | $100$100 (1) |
$25x-6y$25x−6y | $=$= | $-200$−200 (2) |
By equating like parts we can then get simultaneous equations to solve |
||
(1)-(2) $14y$14y | $=$= | $300$300 |
$y$y | $=$= | $\frac{300}{14}$30014 |
Sub $y=\frac{300}{14}$y=30014 into (1) $25x+8\times\frac{300}{14}$25x+8×30014 | $=$= | $100$100 |
$25x$25x | $=$= | $\frac{-500}{7}$−5007 |
$x$x | $=$= | $-\frac{20}{7}$−207 |
Given that $5a+12i=10-3bi$5a+12i=10−3bi:
find the value of $a$a
find the value of $b$b
Find the value of $z$z if $\left(z+i\right)\left(3+2i\right)=20-4i$(z+i)(3+2i)=20−4i.