topic badge

2.04 Negative exponents

Worksheet
Negative exponents
1

Express the following using only positive exponents:

a

p^{ - 2 }

b

a^{ - 8 }

c

3 x^{ - 2 }

d

10 x^{ - 6 }

e

4 a^{ - 2 }

f

4 y^{ - 3 }

g

\dfrac{1}{a^{ - n }}

h

\dfrac{a^{ - n }}{b^{ - m }}

i

p^{ - 2 } q^{3}

j

8 p^{ - 3 }

k

m^{ - 5 } n^{ - 4 } p^{4}

2

Express the following using only negative exponents:

a

\dfrac{1}{u^{5}}

b

\dfrac{10}{p^{8} q^{5}}

3

Write an expression for the reciprocal of a^{3}.

4

Find the value of n on the following equations:

a

\dfrac{1}{36} = 6^{n}

b

\dfrac{1}{8} = 2^{n}

5

Determine the missing exponent so that following equation is always true.

\left( a^{3} b^{ - 5 }\right)^{⬚} = a^{ - 15 } b^{25}

6

Simplify the following, expressing your answers using positive exponents:

a

4 y^{ - 5 } \cdot 3 y^{ - 3 }

b

\left( 6 m\right)^{2} \cdot m^{ - 6 }

c

2 y^{3} \cdot \left( - 2 y^{ - 7 } \right)

d

6 y^{7} \cdot 2 y^{ - 5 } \cdot 5 y^{3}

e

5 p^{3} q^{ - 2 } \cdot 9 p^{ - 3 } q^{5}

f

5 p^{7} q^{ - 7 } \cdot 5 p^{ - 7 } q^{3}

g

8 p^{5} q^{ - 5 } \cdot 4 p^{ - 4 } q^{3}

h

2 p^{4} q^{ - 2 } \cdot 5 p^{ - 4 } q^{ - 5 }

i

5 p^{ - 6 } q^{ - 9 } \cdot \left( - 6 p^{ - 4 } q^{ - 3 }\right)

j

\left(w^{4}\right)^{ - 5 }

k

\left(w^{ - 9 }\right)^{5}

l

\left(5^{2}\right)^{ - p }

m

\left( 4 y^{4}\right)^{ - 4 }

n

\left( 2 y^{ - 5 }\right)^{4}

o

\left( - 4 u^{ - 4 } \right)^{3}

p

\left( - u^{3} \right)^{ - 4 }

q

\left( 4 m^{ - 10 }\right)^{4}

r

\left( 4 m^{ - 8 }\right)^{ - 3 }

s

\left( 4 m\right)^{ - 3 }

t

\left( 5 y^{3}\right)^{ - 3 }

u

\left( 4 p^{8} q^{4}\right)^{ - 2 }

v

\left( \dfrac{4}{5} u^{ - 3 }\right)^{4}

w

\left(\dfrac{y}{2}\right)^{ - 5 }

7

Assuming that all variables are non-zero, simplify the following. Express your answers using positive exponents.

a

\dfrac{12 x^{3}}{4 x^{7}}

b

\dfrac{6 x^{3}}{2 x^{ - 3 }}

c

\dfrac{25 x^{ - 7 }}{5 x^{ - 4 }}

d

\left(\dfrac{a}{b}\right)^{ - 5 }

e

\left(\dfrac{a^{3}}{b^{3}}\right)^{ - 5 }

f

\left(\dfrac{a^{2}}{b^{5}}\right)^{ - 1 }

g

\left(\dfrac{3 a^{9}}{b^{9}}\right)^{ - 2 }

h

\dfrac{- 4 x^{2}}{2 x^{ - 5 }}

i

\dfrac{- 6 x^{ - 7 }}{- 2 x^{ - 4 }}

j

\dfrac{z^{ - 2 } x^{ - 5 }}{y^{ - 7 }}

k

\dfrac{\left( 6 y^{3} z^{2}\right)^{ - 4 }}{\left( 6 y^{3} z^{2}\right)^{ - 5 }}

l

\dfrac{5 p^{5} q^{ - 4 }}{40 p^{5} q^{6}}

m

\left(\dfrac{2 y^{3} x^{0}}{z^{2}}\right)^{ - 4 }

n

\dfrac{x^{2} y^{ - 3 }}{x^{ - 5 } y^{2}}

o

\dfrac{\left(m^{ - 3 }\right)^{ - 1 } \cdot \left(m^{4}\right)^{ - 3 }}{m^{3} \cdot m^{4}}

p

\left(\dfrac{m^{7}}{m^{ - 10 }}\right)^{2} \cdot \left(\dfrac{m^{5}}{m^{2}}\right)^{ - 3 }

q

\dfrac{a^{2} \cdot a^{ - 5 } \cdot b^{ - 2 }}{\left( a \cdot a^{ - 5 } \cdot b^{2}\right)^{2}}

Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

MA.8.AR.1.1

Apply the Laws of Exponents to generate equivalent algebraic expressions, limited to integer exponents and monomial bases.

MA.8.NSO.1.3

Extend previous understanding of the Laws of Exponents to include integer exponents. Apply the Laws of Exponents to evaluate numerical expressions and generate equivalent numerical expressions, limited to integer exponents and rational number bases, with procedural fluency.

What is Mathspace

About Mathspace