topic badge

2.02 Multiplication properties of exponents

Worksheet
Multiplication properties of exponents
1

Write the following in expanded form:

a
3 v^{2} u^{5}
b

3 m^{4} \cdot 2 n^{2}

2

Write the following in exponential form:

a

a \cdot a \cdot b \cdot b

b

3 \cdot 3 \cdot 3 \cdot 3 \cdot y \cdot y \cdot y

c
3 \cdot u \cdot u \cdot u \cdot 5 \cdot v \cdot v \cdot v
d

- 3 \cdot c \cdot c \cdot b \cdot 5 \cdot c \cdot c \cdot a \cdot b

e

\left( 3 p\right) \cdot \left( 3 p\right) \cdot \left( 3 p\right)

3

Write the term that should go in the space to make the following statements true.

a

a^{3} \cdot ⬚ = a^{6}

b

a^3 \cdot ⬚ = a^4

c

3 x^{13} \cdot ⬚ = 9 x^{21}

d

x^{9} y^{8} \cdot ⬚ = x^{11} y^{15}

e

x^{16} y^6 \cdot ⬚ = x^{22} y^{13}

4

Simplify the following, giving your answer in exponential form:

a
2^{2} \cdot 2^{3}
b

3^{9} \cdot 3^{10}

c

y^{2} \cdot y^{6}

d

x^{4} \cdot 10 x^{3}

e

4 y^{5} \cdot 3 y^{2}

f

4 y^{3} \cdot 6 y

g

8 y^{9} \cdot 5 y^{7}

h

8 y^{4} \cdot 8 y^{3}

i

9 m^{2} \cdot 6 m^{2}

j

7 y^{3} \cdot 5 y^{4}

k
u^{2} \cdot u^{6} \cdot u^{3}
l

6 y^{7} \cdot 6 y^{5} \cdot 6 y^{3}

m

4 y^{8} \cdot 6 y^{6} \cdot 3 y^{3}

n

8 y^{3} \cdot 9 y^{4}

o

4 y^{2} \cdot 5 y^{4} \cdot 6 y^{8}

p

3 y^{7} \cdot 5 y^{8} \cdot 2 y

5

Simplify the following, giving your answer in exponential form:

a
5 u^{4} v^{2} \cdot 8 u^{3} v^{4}
b

6 b c^{4} \cdot 8 b^{6} a \cdot 0

c

8 m^{2} n^{4} \cdot 7 m^{6} n

d

8 w u v \cdot 4 u w v \cdot 7 u v w \cdot 6 u v \cdot 6 v u

6

Simplify the following, giving your answer in exponential form:

a

9 y^{9} \cdot 8 \left( - y \right)^{8} \cdot 7 y^{7}

b

4 y^{4} \cdot \left( - 2 y^{6} \right) \cdot 4 y^{5}

c

\left( - 5 y^{6} \right) \cdot \left( - 3 y^{7} \right) \cdot \left( - 4 y^{7} \right)

d

\left( - 9 y^{5} \right) \cdot \left( - 8 y^{9} \right)

e

\left( - 9 b^{4} \right) \cdot 4 b^{4}

f

\left( - 7 y^{5} z\right) \cdot \left( - 3 y x^{3}\right)

g

2 v^{2} w \cdot \left( - 5 u^{2} v^{3} \right) \cdot 3 u^{3} w^{4}

h

\left( - 4 y^{7} \right) \cdot \left( - 6 y^{2} \right) \cdot \left( - 4 y^{2} \right)

i

\left( - 8 q^{4} \right) \cdot p^{2} \cdot \left( - 7 q^{4} \right) \cdot p^{3}

7

Simplify the following, giving your answer in exponential form:

a

\left(j^{2}\right)^{5}

b

\left(c^{9}\right)^{2}

c

\left(f^{8}\right)^{6}

d

\left(w^{3}\right)^{4}

e

y^{8} \cdot \left( 3 y\right)^{5}

f

\left(u^{6}\right)^{3} \cdot u^{2}

g

\left( w^{9} v^{6}\right)^{4}

h

\left(k^{5}\right)^{3} \cdot \left(k^{2}\right)^{8}

i

6 \left(r^{6}\right)^{5} \cdot 4 \left(r^{4}\right)^{7}

j

\left( x^{9} y\right)^{7} \cdot \left( x y^{2}\right)^{4}

k

10 \left(r^{7}\right)^{5} \cdot \left( 2 r s\right)^{4}

l

\left(p^{5}\right)^{9} \cdot \left(q^{6}\right)^{10}

m

\left(p^{10}\right)^{6} \cdot \left(p^{4}\right)^{3}

n

\left(\left(x^{3}\right)^{4}\right)^{5}

8

The length of the base of a triangle is 3 c^{4} and the length of its perpendicular height is 6 c^{8}. What is the expression for the area of the triangle?

9

What quantity multiplied by itself results in w^{100}?

10

Consider \left(r^{2}\right)^{4}.

a

State whether the following expressions are equivalent to \left(r^{2}\right)^{4}:

i

r^{2} \cdot r^{4}

ii

\left( r \cdot r\right) \cdot \left( r \cdot r \cdot r \cdot r\right)

iii

\left( r \cdot r\right)^{4}

iv

\left( r \cdot r\right) \cdot \left( r \cdot r\right) \cdot \left( r \cdot r\right) \cdot \left( r \cdot r\right)

v

r^{2} \cdot r^{2} \cdot r^{2} \cdot r^{2}

b

State whether the following statements are correct.

i

\left(r^{2}\right)^{4} = r^{2 + 4}

ii

\left(r^{2}\right)^{4} = r^{ 2 \cdot 4}

c

Fill in the box to complete the rule: \left(r^{2}\right)^{4} = r^{⬚}

11

Consider the following terms which form a pattern: \left(x^{2}\right)^{1}, \left(x^{2}\right)^{2}, \left(x^{2}\right)^{3}, \left(x^{2}\right)^{4}, \ldots

What would the fifth term be? Fully simplify your answer.

12

Simplify, the following expressions:

a

\left( - x^{3} \right)^{4}

b

\left( 4 y^{4}\right)^{3}

c

\left( 8 y^{6}\right)^{2}

d

\left( 3 y^{6}\right)^{2}

e

\left( - 2 x^{2} \right)^{2}

f

\left( - 3 p^{2} \right)^{5}

g

\left( 2 u^{5} v^{5}\right)^{4}

h

\left( 2 r^{2} s\right)^{4}

13

Write the expression that should go in the parentheses to make the following statements true.

a

\left( ⬚ \right)^2 = q^{12}

b

\left( ⬚ \right)^3 = 27q^{12}

c

\left( ⬚ \right)^2 = 9p^8 q^{18}

Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

MA.8.AR.1.1

Apply the Laws of Exponents to generate equivalent algebraic expressions, limited to integer exponents and monomial bases.

What is Mathspace

About Mathspace