topic badge
Hong Kong
Stage 1 - Stage 3

Ratio of Sides in Right-Angled Triangles

Lesson

Right-angled triangle

In the above right-angled triangle $c$c is the the hypotenuse and $\angle RPQ$RPQ is $90^\circ$90° 

Now if we call $\angle PQR=\theta$PQR=θ and we can identify the opposite and adjacent sides with respect to that angle, (we did this here, if you need to refresh).  So  $b$b is the opposite side, and $a$a is the adjacent side.  

A ratio is a statement of a mathematical relationship between two objects, often represented as a fraction.  Various ratios of the following can be constructed from the right-angled triangle with respect to angle $\theta$θ.  

 $\frac{Opposite}{Adjacent}=\frac{b}{a}$OppositeAdjacent=ba

 $\frac{Adjacent}{Hypotenuse}=\frac{a}{c}$AdjacentHypotenuse=ac

 $\frac{Opposite}{Hypotenuse}=\frac{b}{c}$OppositeHypotenuse=bc

Examples

Question 1

Considering the angle $\theta$θ, what is the value of the ratio $\frac{Adjacent}{Hypotenuse}$AdjacentHypotenuse ?

Think: First we need to identify which sides are the adjacent and hypotenuse with respect to angle theta.  I can see that $BA$BA is the hypotenuse, $AC$AC is the opposite side and $BC$BC is the adjacent.

Do: $\frac{Adjacent}{Hypotenuse}$AdjacentHypotenuse = $\frac{BC}{AB}=\frac{5}{13}$BCAB=513

 

Question 2

Question 3

Consider the angle $\theta$θ.

What is the value of the ratio $\frac{Opposite}{Adjacent}$OppositeAdjacent?
Express your answer as a fraction.

A right-angled triangle is depicted with vertices labeled A, B, and C. The right angle is at vertex C, indicated by a square corner symbol. An angle theta (θ) is marked at vertex B. Side $BC$BC is adjacent to angle theta (θ) and is labeled with the length of $8$8 units. Side $CA$CA is opposite to angle theta (θ) and is labeled with the length of $15$15 units. The hypotenuse $AB$AB is labelled with the length $17$17 units.

 

What is Mathspace

About Mathspace