Many geometrical properties of figures can either be verified or proved using coordinate geometry.
There is a range of established formulas that become useful in this endeavor. You may wish to go back to a previous lesson to review each one.
In the lesson, we will focus on triangles and quadrilaterals. You should be familiar with the properties of side lengths and angles of the following polygons.
Quadrilaterals:
Triangles:
Show that the quadrilateral with vertices given by $P\left(2,3\right),Q\left(3,6\right),R\left(6,8\right),S\left(5,5\right)$P(2,3),Q(3,6),R(6,8),S(5,5) is a parallelogram.
A parallelogram is a quadrilateral with both pairs of opposite sides parallel.
Think: If opposite sides are parallel then they must have the same slope. We need $\overline{PQ}\parallel\overline{RS}$PQ∥RS and $\overline{QR}\parallel\overline{PS}$QR∥PS
Do: We can check the slopes of $\overline{PQ}$PQ and $\overline{RS}$RS and the slopes of the line segments $\overline{QR}$QR and $\overline{PS}$PS.
$m_{\overline{PQ}}=\frac{6-3}{3-2}=3$mPQ=6−33−2=3
$m_{\overline{RS}}=\frac{5-8}{5-6}=3$mRS=5−85−6=3
$\overline{PQ}\parallel\overline{RS}$PQ∥RS
$m_{\overline{QR}}=\frac{8-6}{6-3}=\frac{2}{3}$mQR=8−66−3=23
$m_{\overline{PS}}=\frac{5-3}{5-2}=\frac{2}{3}$mPS=5−35−2=23
$\overline{QR}\parallel\overline{PS}$QR∥PS
Reflect: Both pairs of opposite sides are parallel. Hence, the quadrilateral is a parallelogram.
Prove that $A\left(-4,-4\right),B\left(-1,-1\right),C\left(1,-3\right)$A(−4,−4),B(−1,−1),C(1,−3) are the vertices of a right triangle.
Think: To be a right triangle, we need to have one pair of perpendicular sides. The easiest way to do this is to check for the perpendicular property $m_1m_2=-1$m1m2=−1 given above for $m_{\overline{AB}}$mAB, $m_{\overline{AB}}$mAB, and $m_{\overline{AB}}$mAB.
Do: The three slopes are determined as
$m_{\overline{AB}}=\frac{-1-\left(-4\right)}{-1-\left(-4\right)}=1$mAB=−1−(−4)−1−(−4)=1
$m_{\overline{BC}}=\frac{-3-\left(-1\right)}{1-\left(-1\right)}=-1$mBC=−3−(−1)1−(−1)=−1
$m_{\overline{AC}}=\frac{-3-\left(-4\right)}{1-\left(-4\right)}=\frac{1}{5}$mAC=−3−(−4)1−(−4)=15
Reflect: Note that $m_{\overline{AB}}\times m_{\overline{BC}}=-1$mAB×mBC=−1 and so $\overline{BC}$BC is perpendicular to $\overline{AB}$AB, and the triangle is right-angled.
Prove that the quadrilateral with vertices $A\left(4,9\right),B\left(5,13\right),C\left(9,14\right),D\left(8,10\right)$A(4,9),B(5,13),C(9,14),D(8,10) is a rhombus.
Think: A rhombus must have all sides of equal length and opposite sides must be parallel. It does not need to be a square, so the adjacent sides do not need to be perpendicular.
Do: Let's look at distances first, to ensure that they are all the same. We find:
$\overline{AB}=\sqrt{1^2+4^2}=\sqrt{17}$AB=√12+42=√17
$\overline{BC}=\sqrt{4^2+1^2}=\sqrt{17}$BC=√42+12=√17
$\overline{CD}=\sqrt{1^2+4^2}=\sqrt{17}$CD=√12+42=√17
$\overline{DA}=\sqrt{4^2+1^2}=\sqrt{17}$DA=√42+12=√17
Next, let's calculate slope to ensure that opposite sides are parallel,
$m_{\overline{AB}}=\frac{4}{1}=4$mAB=41=4
$m_{\overline{CD}}=\frac{-4}{-1}=4$mCD=−4−1=4
so $m_{\overline{AB}}\parallel m_{\overline{CD}}$mAB∥mCD
$m_{\overline{BC}}=\frac{1}{4}$mBC=14
$m_{\overline{DA}}=\frac{1}{4}$mDA=14
so $m_{\overline{BC}}\parallel m_{\overline{DA}}$mBC∥mDA
Reflect: The opposite side pairs are parallel and all sides are the same length, so this is indeed a rhombus.
Consider the triangle shown below:
Determine the slope of the line segment $AB$AB.
Similarly, determine the slope of side $AC$AC:
Next determine the length of the side $AB$AB.
Now determine the length of the side $AC$AC.
Hence state the type of triangle that has been graphed. Choose the most precise answer.
An acute isosceles triangle.
An isosceles right triangle.
A scalene right triangle.
An equilateral triangle.
The four points $A$A$\left(-8,-4\right)$(−8,−4), $B$B$\left(-5,0\right)$(−5,0), $C$C$\left(0,-2\right)$(0,−2) and $D$D$\left(-3,-6\right)$(−3,−6) are the vertices of a quadrilateral.
Plot the quadrilateral.
Find the slope of $\overline{AB}$AB.
Find the slope of $\overline{BC}$BC.
Find the slope of $\overline{CD}$CD.
Find the slope of $\overline{DA}$DA.
Which segments are parallel?
$\overline{DC}$DC and $\overline{AB}$AB
$\overline{AD}$AD and $\overline{AB}$AB
$\overline{DC}$DC and $\overline{BC}$BC
$\overline{BC}$BC and $\overline{AD}$AD
What type of quadrilateral is $ABCD$ABCD? Choose the most precise answer.
A square
A rhombus
A rectangle
A parallelogram
$A$A $\left(2,1\right)$(2,1), $B$B $\left(7,3\right)$(7,3) and $C$C $\left(7,-5\right)$(7,−5) are the vertices of a triangle.
Which side of the triangle is a vertical line?
$BC$BC
$AB$AB
$AC$AC
Determine the area of the triangle using $A=\frac{1}{2}bh$A=12bh.