Consider the function $f\left(x\right)=\sqrt[3]{x}$f(x)=3√x.
Complete the table of values below:
$x$x | $-8$−8 | $-1$−1 | $0$0 | $1$1 | $8$8 |
---|---|---|---|---|---|
$\sqrt[3]{x}$3√x | $-2$−2 | $\editable{}$ | $\editable{}$ | $\editable{}$ | $\editable{}$ |
Now draw a graph of the function, making sure to include the point of symmetry.
What is the domain of the function?
$x>0$x>0
All real numbers.
$x\le0$x≤0
$x\ge0$x≥0
What is the range of the function?
All real numbers.
$y\le0$y≤0
$y>0$y>0
$y\ge0$y≥0
Consider the function $f\left(x\right)=\sqrt[3]{x-1}$f(x)=3√x−1.
Consider the function $f\left(x\right)=\sqrt[3]{x}-1$f(x)=3√x−1.
Consider the function $f\left(x\right)=-\sqrt[3]{x}$f(x)=−3√x.