Measurement

Lesson

Let's review the rules for areas of quadrilaterals, triangles and circles that we have covered so far.

Areas

Rectangle |
$\text{Area of a Rectangle }=\text{length }\times\text{width }$Area of a Rectangle =length ×width $A=L\times W$ |

Square |
$\text{Area of a Square}=side\times side$Area of a Square= $A=S\times S$ $A=S^2$ |

Triangle |
$\text{Area of a triangle }=\text{half of the area of the rectangle with base and height the same as triangle }$Area of a triangle =half of the area of the rectangle with base and height the same as triangle $\text{Area of a triangle }=\frac{1}{2}\times\text{base }\times\text{height }$Area of a triangle =12×base ×height $A=\frac{1}{2}bh$ |

Parallelogram |
$\text{Area of a Parallelogram }=\text{Base }\times\text{Height }$Area of a Parallelogram =Base ×Height $A=b\times h$ |

Trapezium |
$\text{Area of a Trapezium}=\frac{1}{2}\times\left(\text{Base 1 }+\text{Base 2 }\right)\times\text{Height }$Area of a Trapezium=12×(Base 1 +Base 2 )×Height $A=\frac{1}{2}\times\left(a+b\right)\times h$ |

Kite |
$\text{Area of a Kite}=\frac{1}{2}\times\text{diagonal 1}\times\text{diagonal 2}$Area of a Kite=12×diagonal 1×diagonal 2 $A=\frac{1}{2}\times x\times y$ |

Rhombus |
$\text{Area of a Rhombus }=\frac{1}{2}\times\text{diagonal 1}\times\text{diagonal 2}$Area of a Rhombus =12×diagonal 1×diagonal 2 $A=\frac{1}{2}\times x\times y$ |

Circle |
$\text{Area of a circle}=\pi r^2$Area of a circle=π |

Find the area of the rectangle shown.

Find the area of the parallelogram shown.

Find the shaded area shown in the figure.

Find the perimeters and areas of circles and composite shapes and the volumes of prisms, including cylinders