Consider the function $f\left(x\right)=x-6$f(x)=x−6.
Which of the following is an inverse function for $f\left(x\right)$f(x)?
$f^{-1}\left(x\right)=\frac{x}{6}$f−1(x)=x6
$f^{-1}\left(x\right)=6x$f−1(x)=6x
$f^{-1}\left(x\right)=x+6$f−1(x)=x+6
$f^{-1}\left(x\right)=\sqrt[6]{x}$f−1(x)=6√x
$f^{-1}\left(x\right)=6-x$f−1(x)=6−x
$f^{-1}\left(x\right)=x^6$f−1(x)=x6
Find the inverse function of $f\left(x\right)=7x$f(x)=7x by letting $y=f^{-1}(x)$y=f−1(x).
Find the inverse function of $y=-8x+6$y=−8x+6.
Find the inverse function of $f\left(x\right)=7x-8$f(x)=7x−8 by letting $y=f^{-1}(x)$y=f−1(x).