Which of the following options describes a method for sketching a graph of $y=\left|f\left(x\right)\right|$y=|f(x)|, supposing we already have a graph of $y=f\left(x\right)$y=f(x)?
Reflect the graph of $y=f\left(x\right)$y=f(x) over the $x$x-axis.
Reflect the parts of the graph of $y=f\left(x\right)$y=f(x) over the $x$x-axis where $f\left(x\right)<0$f(x)<0.
Reflect the parts of the graph of $y=f\left(x\right)$y=f(x) over the $y$y-axis where $x<0$x<0.
Reflect the parts of the graph of $y=f\left(x\right)$y=f(x) over the $x$x-axis where $f\left(x\right)>0$f(x)>0.
Consider the function $y=\left|3x\right|$y=|3x|.
Consider the function $y=\left|x-1\right|$y=|x−1|.
Consider the function $y=\left|x\right|+4$y=|x|+4.