topic badge
AustraliaVIC
VCE 12 General 2023

7.05 Binary and permutation matrices

Worksheet
Binary and permutation matrices
1

State whether the following are binary matrices:

a
\begin{bmatrix} 3 & 2 & 9 & 7\\ 8 & 9 & 7 & 5 \end{bmatrix}
b
\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}
c
\begin{bmatrix} -1 & -1 & 1 \\ 1 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix}
d
\begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}
e
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
f
\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}
2

State whether the following are permutation matrices:

a
\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
b
\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}
c
\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}
d
\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}
e
\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}
3

State whether the following are permutation matrices of order 2:

a
\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}
b
\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}
c
\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}
d
\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
e
\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
f
\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}
4
a

Calculate the number of possible orderings of the letters a, b and c.

b

Hence state the number of permutation matrices of order 3.

c

Four of the permutation matrices of order 3 are shown. Construct the remaining permutation matrices.

\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix},\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix},\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}
5
a

How many unique permutation matrices of order 4 are possible?

b

How many unique permutation matrices of order 6 are possible?

c

How many unique permutation matrices of order n are possible?

Permutation matrix products
6

For each matrix M and permutation matrix P given below:

i

Find the resulting matrix R=PM.

ii

State whether the resulting matrix R is a column or row permutation.

a

M=\begin{bmatrix} 9 & -7 & 8 \\ 3 & -2 & 1 \\ -5 & 6 & -4 \end{bmatrix},P=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}

b
M=\begin{bmatrix} -5 & -9 & 7 \\ 3 & 6 & 2 \\ 8 & 4 & -1 \end{bmatrix},P=\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}
7

Consider the matrix M and permutation matrix P given below:

M=\begin{bmatrix} -2 & -5 & -3 \\ 1 & 9 & -6 \\ 4 & 8 & 7 \end{bmatrix},P=\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}

a

Find the resulting column matrix R = MP.

b

Column 1 of matrix M moved to which column in matrix R?

c

Determine which of the following would result in a row permutation:

A
PM
B
PMP
C
MP^{2}
D
M+P
8

For each of the following, a permutation matrix P was multiplied together with matrix M to create matrix R:

i

Write down the matrix equation, using M, P and R.

ii

Determine the permutation matrix P.

a
M=\begin{bmatrix} 5 & -9 & -7 \\ 1 & 6 & 2 \\ 3 & 8 & -4 \end{bmatrix},R=\begin{bmatrix} 5 & -9 & -7 \\ 3 & 8 & -4 \\ 1 & 6 & 2 \end{bmatrix}
b
M=\begin{bmatrix} 3 & 9 & -5 \\ -4 & 7 & -1 \\ -8 & 2 & -6 \end{bmatrix},R=\begin{bmatrix} 9 & 3 & -5 \\ 7 & -4 & -1 \\ 2 & -8 & -6 \end{bmatrix}
9

P and Q represent the two permutation matrices of order 2:

P=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, Q=\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}

Complete the multiplication table:

\timesPQ
P
Q
Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

U4.AoS2.3

communication and dominance matrices and their application

What is Mathspace

About Mathspace