topic badge
AustraliaVIC
VCE 12 General 2023

7.07 Transition matrices

Worksheet
Powers and determinants of matrices
1

Calculate the following for A=\begin{bmatrix} 5 & 7 \\ 8 & 6 \end{bmatrix}:

a
A^2
b
A^3
c
A^4
2

For the transition matrices A, B and C, calculate the following. Round matrix elements to four decimal places.

A=\begin{bmatrix} 0.8 & 0.6 \\ 0.2 & 0.4 \end{bmatrix},B=\begin{bmatrix} 0.83 & 0.57 \\ 0.17 & 0.43 \end{bmatrix},C=\begin{bmatrix} 0.1 & 0.3 & 0.6 \\ 0.6 & 0.1 & 0.3 \\ 0.3 & 0.6 & 0.1 \end{bmatrix}
a
A^4
b
B^6
c
C^{40}
d

\vert A \vert

e
\vert A \vert ^4
f
\vert A^4 \vert
g

\vert B \vert

h
\vert B \vert ^6
i
\vert B^6 \vert
3

Simplify and evaluate the expression A^{2} + 3 B - C^{3}, where A, B and C are defined below:

A=\begin{bmatrix} 9 & 7 \\ 1 & 8 \end{bmatrix},B=\begin{bmatrix} 2 & 5 \\ 9 & 7 \end{bmatrix},C=\begin{bmatrix} 8 & 2 \\ 4 & 4 \end{bmatrix}

4

The transition matrix, T, has a determinant of \vert T \vert =0.4. Find \vert T^3 \vert .

5

The transition matrix, T, has a determinant of \vert T \vert =-0.5. Find \vert T^2 \vert .

6

A matrix, A, has \vert A \vert = 0.3 and \vert A^4 \vert = 0.0072. Is A a transition matrix? Explain your answer.

Transition matrices and steady state
7

Construct the transition matrix T for each of the following state diagrams:

a
b
c
8

The chance of the weather being rainy (R) or fine (F) tomorrow, given it was rainy or fine today, is displayed in the table below. Construct an appropriate transition matrix for this information.

\text{Today} (R)\text{Today} (F)
\text{Tomorrow} (R) 0.80.25
\text{Tomorrow} (F)0.20.75
9

Consider the transition matrix T below:

T=\begin{bmatrix} 0.758 & 0.153 \\ 0.243 & 0.847 \end{bmatrix}

a

Find T^{50}, rounding each element correct to four decimal places:

b

Find T^{51}, rounding each element correct to four decimal places:

c

Hence, determine whether a steady state been reached.

10

Consider the transition matrix T below:

T=\begin{bmatrix} 0.07 & 0.03 & 0.95 \\ 0.04 & 0.20 & 0 \\ 0.88 & 0.77 & 0.05 \end{bmatrix}

a

Find T^{20}, rounding each element correct to four decimal places.

b

Find T^{21}, rounding each element correct to four decimal places.

c

Hence, determine whether a steady state been reached.

11

Consider the transition matrix T below:

T=\begin{bmatrix} 0.4 & 0.3 & 0.1 \\ 0.5 & 0 & 0.6 \\ 0.1 & 0.7 & 0.3 \end{bmatrix}

Determine the smallest value of n such that T^{n} has reached a steady state.

12

Determine whether the following transition matrices will reach a steady state:

a

T=\begin{bmatrix} 0 & 0.91 & 0 & 0.49 \\ 0.2 & 0 & 0.29 & 0 \\ 0 & 0.09 & 0 & 0.51 \\ 0.8 & 0 & 0.71 & 0 \end{bmatrix}

b

T=\begin{bmatrix} 0.38 & 0 & 0.34 \\ 0.29 & 0.42 & 0.16 \\ 0.33 & 0.58 & 0.5 \end{bmatrix}

c

T=\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}

d

T=\begin{bmatrix} 0.5 & 0.7 \\ 0.5 & 0.3 \end{bmatrix}

13

Consider the transition matrix T given below:

T=\begin{bmatrix} 0 & 0.19 & 0 & 0.58 \\ 0.67 & 0 & 0.45 & 0 \\ 0 & 0.81 & 0 & 0.42 \\ 0.33 & 0 & 0.55 & 0 \end{bmatrix}

a

Calculate the matrix T^{2}.

b

Explain why this matrix has no steady state solution.

14

Consider the transition matrix T and initial state matrix S_0 below:

T=\begin{bmatrix} 0.5 & 0.2 \\ 0.5 & 0.8 \end{bmatrix},S_0=\begin{bmatrix} 160 \\ 220 \end{bmatrix}

a

Use the recurrence relation S_{n + 1} = T \times S_n to determine S_3.

b

Use S_n = T^n \times S_0 to calculate S_5.

c

Find the steady state solution matrix with each element rounded to two decimal places.

15

For each transition matrix T and initial state matrix S_0 below, determine the steady state solution matrix for the system, rounding each element to the nearest whole number if necessary.

a
T=\begin{bmatrix} 0.6 & 0.1 & 0.3 \\ 0.2 & 0.9 & 0.1 \\ 0.2 & 0 & 0.6 \end{bmatrix},S_0=\begin{bmatrix} 400 \\ 640 \\ 320 \end{bmatrix}
b
T=\begin{bmatrix} 0.1 & 0.2 & 0.4 \\ 0.6 & 0 & 0.6 \\ 0.3 & 0.8 & 0 \end{bmatrix},S_0=\begin{bmatrix} 56 \\ 64 \\ 72 \end{bmatrix}
Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

U4.AoS2.2

the inverse of a matrix and the condition for a matrix to have an inverse, including determinant for transition matrices, assuming the next state only relies on the current state with a fixed population

U4.AoS2.4

transition diagrams and transition matrices and regular transition matrices and their identification

U4.AoS2.5

use matrix recurrence relations to generate a sequence of state matrices, including an informal identification of the equilibrium or steady state matrix in the case of regular state matrices

U4.AoS2.6

construct a transition matrix from a transition diagram or a written description and vice versa

What is Mathspace

About Mathspace