topic badge
AustraliaVIC
VCE 11 General 2023

6.03 Addition and subtraction of matrices

Worksheet
Matrix addition and subtraction
1

Consider the matrices A = \begin{bmatrix} 1 & 5 \\ 3 & 2 \end{bmatrix} \text{and } B = \begin{bmatrix} 3 & -1 \\ 2 & 4 \end{bmatrix}.

a

State the dimensions of matrix A.

b

State the dimensions of matrix B.

c

Is A + B possible?

2

Consider the matrices A = \begin{bmatrix} 1 & 6 \\ -2 & 2 \\ 8 & 0 \end{bmatrix} \text{and } B = \begin{bmatrix} 3 & -1 & 5 \\ 2 & 4 & 7 \end{bmatrix}.

a

State the dimensions of matrix A.

b

State the dimensions of matrix B.

c

Is A + B possible?

3

Consider the matrices A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{, }B = \begin{bmatrix} a \\ b \end{bmatrix} \text{and } C = \begin{bmatrix} a & b \end{bmatrix}.

a

State the dimensions of matrix A.

b

State the dimensions of matrix B.

c

State the dimensions of matrix C.

d

Is A + B possible?

e

Is B - C possible?

4

Consider the matrices:

A = \begin{bmatrix} 1 & 5 & 3 \\ 2 & -1 & 6 \\ 10 & 7 & 8 \end{bmatrix} \text {, } B = \begin{bmatrix} 2 & -4 & 1 \\ 8 & 3 & -9 \\ 11 & 12 & 0 \end{bmatrix} \text{and } C = \begin{bmatrix} 1 & -6 \\ 5 & 9 \end{bmatrix}
a

State the dimensions of matrix A.

b

State the dimensions of matrix B.

c

State the dimensions of matrix C.

d

Is A + B possible?

e

Is A + B - C possible?

5

Consider the matrices: A = B = C = \begin{bmatrix} a & b \\ c & d \\ e & f \\ g & h \end{bmatrix}

a

State the dimensions of matrix A.

b

State the dimensions of matrix B.

c

State the dimensions of matrix C.

d

Is C - B possible?

e

Is C + A - B possible?

6

Find A + B, if:

a
A = \begin{bmatrix} 2 & 5 \\ 4 & 3 \end{bmatrix} and B = \begin{bmatrix} 5 & 4 \\ -1 & 6 \end{bmatrix}
b
A = \begin{bmatrix} -1 \\ 5 \\ 7 \end{bmatrix} and B = \begin{bmatrix} 2 \\ 4 \\ -3 \end{bmatrix}
c
A = \begin{bmatrix} 1 & \frac{5}{2} & 8 \\ 5 & -7 & 10 \end{bmatrix} and B = \begin{bmatrix} 2 & \frac{3}{2} & 9 \\ -3 & 0 & 7 \end{bmatrix}
d
A = \begin{bmatrix} 4 & 8 \\ 5 & 10 \\ -2 & 6 \end{bmatrix} and B = \begin{bmatrix} 1 & 9 \\ -4 & 2 \\ 3 & -1 \end{bmatrix}
e
A = \begin{bmatrix} 5 & 2 & 8 \\ 6 & 10 & -3 \\ 1 & -2 & 6 \end{bmatrix} and B = \begin{bmatrix} 1 & 5 & 9 \\ 4 & 6 & -2 \\ 1 & 3 & -1 \end{bmatrix}
7

Find A - B, if:

a
A = \begin{bmatrix} 1 & 4 \\ 5 & 2 \end{bmatrix} and B = \begin{bmatrix} 8 & 0 \\ -1 & 7 \end{bmatrix}
b
A = \begin{bmatrix} -2 \\ 4 \\ 3 \end{bmatrix} and B = \begin{bmatrix} 8 \\ 0 \\ -3 \end{bmatrix}
c
A = \begin{bmatrix} -\frac{1}{3} & 7 & 12 \\ 11 & -3 & 0 \end{bmatrix} and B = \begin{bmatrix} \frac{2}{3} & 1 & 0 \\ 4 & 8 & 7 \end{bmatrix}
d
A = \begin{bmatrix} 6 & 7 \\ 9 & 10 \\ 4 & -6 \end{bmatrix} and B = \begin{bmatrix} 2 & 5 \\ -1 & 3 \\ 6 & 1 \end{bmatrix}
e
A = \begin{bmatrix} 7 & 4 & 2 \\ 11 & 10 & 8 \\ 9 & 3 & 7 \end{bmatrix} and B = \begin{bmatrix} 5 & -3 & 1 \\ 5 & 3 & 2 \\ 0 & 4 & -1 \end{bmatrix}
f
A = \begin{bmatrix} 3.6 & 7.4 \\ 8.9 & 10.5 \\ 4.7 & -6.3 \end{bmatrix} and B = \begin{bmatrix} 1.8 & 5.1 \\ 0.9 & 5.2 \\ -6.1 & 1.5 \end{bmatrix}
g
A = \begin{bmatrix} 75 & 42 & 21 & 54 \\ 18 & 27 & 81 & 56 \\ 93 & 36 & 72 & 49 \end{bmatrix} and B = \begin{bmatrix} 51 & -32 & 18 & 21 \\ 56 & 39 & 24 & 57\\ 18 & 27 & -19 & 32 \end{bmatrix}
Matrix equations
8

Solve the following matrix equations for x:

a
\begin{bmatrix} 5 & x \\ -2 & 9 \end{bmatrix} + \begin{bmatrix} 7 & 3 \\ 8 & 2 \end{bmatrix} = \begin{bmatrix} 12 & 8 \\ 6 & 11 \end{bmatrix}
b
\begin{bmatrix} 10 & 8 \\ -4 & 10 \end{bmatrix} - \begin{bmatrix} 8 & 3 \\ 2x & 7 \end{bmatrix} = \begin{bmatrix} 2 & 5 \\ -14 & 3 \end{bmatrix}
c
\begin{bmatrix} 11 & 7 \\ -x & 10 \\ 4 & 9 \end{bmatrix} - \begin{bmatrix} 6 & 2 \\ -8 & -1 \\ 0 & -3 \end{bmatrix} = \begin{bmatrix} 5 & 5 \\ 9 & 11 \\ 4 & 12 \end{bmatrix}
9

Consider the following matrix equation:

\begin{bmatrix} u - 3 & 2v & 9 \\ 3x & 7 & 10 \end{bmatrix} + \begin{bmatrix} 4u & v & -3w \\ 10 & 5 & 27 \end{bmatrix} = \begin{bmatrix} 47 & 12 & 18 \\ 31 & 6y & 37 \end{bmatrix}

Find the value of:

a
u
b
v
c
w
d
x
e
y
Applications
10

The following table shows the number of visitors to a website by country:

AustraliaNew ZealandThailandChina
January37252941
February26351951
March32221827
April30282437
May31202428
a

Find the total number of visitors to the site during each month. Express your answer as a column matrix, where the rows describe the months in order of the given table.

b

Find how many more visitors were from China than from Thailand each month by subtracting an appropriate pair of column matrices. Express your answer as a column matrix, where the rows describe the months in order of the given table.

11

The tables below show the number of fruit and vegetables sold at Mohamad's three corner shops over a particular weekend.

Saturday:

FruitVegetables
Shop 15829
Shop 24871
Shop 35438

Sunday:

FruitVegetables
Shop 14532
Shop 24062
Shop 33846
a

Write the sales of fruit and vegetables for Saturday as a 3 \times 2 matrix.

b

Write the sales of fruit and vegetables for Sunday as a 3 \times 2 matrix.

c

Add your matrices to find the total number of sales of fruit and vegetables for each shop over the entire weekend. Express your answers as a 3 \times 2 matrix.

Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

U1.AoS3.3

matrix arithmetic: the definition of addition, subtraction, multiplication by a scalar, multiplication, the power of a square matrix, and the conditions for their use

U1.AoS3.9

add and subtract matrices, multiply a matrix by a scalar or another matrix, and raise a matrix to a power

What is Mathspace

About Mathspace