topic badge
AustraliaVIC
VCE 11 General 2023

6.08 Inverse matrices

Worksheet
Determinants of 2 x 2 matrices
1

Evaluate the following:

a
\begin{vmatrix} 1 & 7 \\ 9 & 5\end{vmatrix}
b
\begin{vmatrix} -4 & -6 \\ 3 & 1\end{vmatrix}
c
\begin{vmatrix} 11 & 13 \\ 12 & 14\end{vmatrix}
d
\begin{vmatrix} \dfrac{1}{3} & -15 \\ \\ \dfrac{4}{5} & -6\end{vmatrix}
e
\begin{vmatrix} 4.6 & -5.9 \\ 9.5 & -1.5\end{vmatrix}
f
\begin{vmatrix} \dfrac{\pi}{2} & 3 \\ \\-\dfrac{1}{3} & -4\end{vmatrix}
2
a

State the condition for a matrix to have an inverse.

b

Hence, determine if each of the following matrices has an inverse:

i
\begin{bmatrix} 4 & 2 \\ -5 & 6\end{bmatrix}
ii
\begin{bmatrix} 1 & 3 \\ 2 & 6\end{bmatrix}
iii
\begin{bmatrix} 3 & 12 \\ -2 & -8\end{bmatrix}
iv
\begin{bmatrix} 2 & 0 \\ 8 & 4\end{bmatrix}
3

Form an expression for the determinant of the matrix \begin{bmatrix} -5n & 2n^2 \\ -7 & 9n\end{bmatrix}.

4

Consider the equation \begin{vmatrix} 9 & 6 \\ 3 & n\end{vmatrix}= 18. Solve for n.

Inverses of 2 x 2 matrices
5

If B=\begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} is the inverse of A=\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}, find:

a

the determinant of A.

b

the value of each of the following:

i

b_{11}

ii

b_{12}

iii

b_{21}

iv

b_{22}

6

For each matrix A:

i
Find the determinant of A.
ii
Find A^{-1}.
a
A=\begin{bmatrix} 3 & 9 \\ 2 & 7\end{bmatrix}
b
A=\begin{bmatrix} -4 & 7 \\ 2 & -3\end{bmatrix}
c
A=\begin{bmatrix} 11 & 17 \\ 13 & 22\end{bmatrix}
d
A=\begin{bmatrix} 9 & 2 \\ 3 & 7\end{bmatrix}
e
A=\begin{bmatrix} 2 & 1 \\ -3 & -9\end{bmatrix}
f
A=\begin{bmatrix} 25 & 26 \\ 21 & 22\end{bmatrix}
g
A=\begin{bmatrix} -\dfrac{1}{3} & \dfrac{1}{3} \\\\ 9 & -6\end{bmatrix}
h
A=\begin{bmatrix} -9.7 & 4.3 \\ 1.3 & -4.7 \end{bmatrix}
7

For each matrix A:

i

Find the determinant of A. Give your answer in exact form.

ii

Find A^{-1}.

a

A=\begin{bmatrix} -8 & -9\pi \\\\ \dfrac{1}{3} & \dfrac{1}{4}\end{bmatrix}

b
A = \begin{bmatrix} -6 & -4 \\ \\\dfrac {1}{2} & \dfrac{\pi}{3}\end{bmatrix}
8

Determine the inverse of each of the following matrices. Round each element to two decimal places if necessary.

a
B=\begin{bmatrix} -7 & -1 \\ 9 & 3\end{bmatrix}
b
V=\begin{bmatrix} 16 & 21 \\ 12 & 13\end{bmatrix}
c
X=\begin{bmatrix} -8 & -\dfrac{1}{2} \\\\ 15 & \dfrac{2}{5}\end{bmatrix}
d
P=\begin{bmatrix} 3 & 4 \\ 1 & 9\end{bmatrix}
e
C=\begin{bmatrix} -7.6 & 9.5 \\ -5.2 & -2.9\end{bmatrix}
9

Given the following pairs of matrices are inverses of each other, state their product:

a

\begin{bmatrix} 7 & 4 \\ 5 & 3 \end{bmatrix} and \begin{bmatrix} 3 & -4 \\ -5 & 7 \end{bmatrix}

b

\begin{bmatrix} 2 & 3 & 7 \\ 6 & 0 & 5 \\ 1 & 4 & 8 \end{bmatrix} and \begin{bmatrix} 20 & -4 & -15 \\ 43 & -9 & -32 \\ -24 & 5 & 18 \end{bmatrix}

10

For each pair of matrices:

i

Find AB.

ii

Hence, state whether A and B are inverses of each other.

a

A=\begin{bmatrix} 7 & 2 \\ 3 & 1 \end{bmatrix} and B=\begin{bmatrix} 1 & -2 \\ -3 & 7 \end{bmatrix}

b

A=\begin{bmatrix} 7 & 3 \\ 5 & 2 \end{bmatrix} and B=\begin{bmatrix} 2 & -3 \\ -5 & 7 \end{bmatrix}

c

A=\begin{bmatrix} 3 & 3 & 1 \\ 2 & 1 & 2 \\ 4 & 4 & 1 \end{bmatrix} and B=\begin{bmatrix} -7 & 1 & 5 \\ 6 & -1 & -4 \\ 4 & 0 & -3 \end{bmatrix}

d

A=\begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} and B=\begin{bmatrix} 0 & 1 & 0 \\ 1 & -1 & -2 \\ 0 & 0 & 1 \end{bmatrix}

11

Consider A = \begin{bmatrix} -2 & 5 \\ -1 & 2\end{bmatrix} \text{ and } B=\begin{bmatrix} 2 & -5 \\ 1 & -2\end{bmatrix}.

a

Find AB.

b

Find A^{-1}.

12

Given the matrix A and its inverse A^{-1}, find n:

a

A = \begin{bmatrix} 7 & 2 \\ 8 & 1\end{bmatrix} and A^{-1} =\begin{bmatrix} -\dfrac {1}{9} & \dfrac{2} {9} \\\\ \dfrac {8}{9} & n \end{bmatrix}

b

A = \begin{bmatrix} -1 & 2\\ 3 & -9\end{bmatrix} and A^{-1}=\begin{bmatrix} -3 & n \\\\ -1 & -\dfrac{1}{3}\end{bmatrix}

c

A = \begin{bmatrix} 5 & n \\ -2 & -4\end{bmatrix} and A^{-1} =\begin{bmatrix} \dfrac {2}{3} & \dfrac{7}{6} \\\\ -\dfrac {1}{3} & -\dfrac{5}{6}\end{bmatrix}

d

A = \begin{bmatrix} 7 & 5\\ 3 & n\end{bmatrix} and A^{-1}=\begin{bmatrix} \dfrac{3}{16} & -\dfrac{5}{48} \\\\ -\dfrac{1}{16} & \dfrac{7}{48}\end{bmatrix}

Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

U1.AoS3.4

determinant and inverse of a matrix

What is Mathspace

About Mathspace