topic badge
AustraliaVIC
VCE 11 General 2023

6.01 Types of matrices

Worksheet
Matrix dimensions
1

Suppose M is a 3 \times 2 matrix.

a

How many rows does M have?

b

How many columns does M have?

2

State whether the following matrices are valid:

a
\begin{bmatrix} 3 & 6 \\ -2 & 8 \end{bmatrix}
b
\begin{bmatrix} 3 & 6 \\ -2 & 5 & -4 \end{bmatrix}
c
\begin{bmatrix} -1 & 7 & 0 \end{bmatrix}
3

State how many elements there are in the following:

a

A matrix with 4 rows and 5 columns.

b

The third column of a 7 \times 8 matrix.

c

The leading diagonal of a 4 \times 4 matrix.

d

A square matrix with 5 rows.

4

State the dimensions of the following matrices in the form m \times n:

a
\begin{bmatrix} -1 & -4 \\ -9 & 9 \end{bmatrix}
b
\begin{bmatrix} -5 & 2 & -2 \end{bmatrix}
c
\begin{bmatrix} 8 \\ 0 \\ -2 \\ 2 \end{bmatrix}
d
\begin{bmatrix} -4 & -6 \\ 7 & 5 \\ 6 & 1 \end{bmatrix}
e
\begin{bmatrix} 2 & 3 & 1 &8 \\ 5 & -5 & 2 & 1 \\ 7 & -8 & 5 & 6 \end{bmatrix}
f
\begin{bmatrix} 7 & -2 & 1 \\ 9 & -3 & 8 \\ -8 & 0 & 4\end{bmatrix}
g
\begin{bmatrix} 7 & -2 & -1 \\ 9 & -3 & 8 \\ -8 & 0 & 4\end{bmatrix}
h
\begin{bmatrix} -4 & 3 & 6 & 9 \end{bmatrix}
i
\begin{bmatrix} 5 & 2 & -6 \\ 0 & 4 & -9 \\ -1 & 8 & -8\end{bmatrix}
j
\begin{bmatrix} 7 & 8 & 2 & 7 & 1 & 0 \\ -2 & -5 & -3 & 1 & 4 & -7 \\ -8 & 8 & -4 & 9 & 5 & 3\end{bmatrix}
5

State the entry at a_{23} \text{ in } A = \begin{bmatrix} -2 & -5 & 5 \\ -1 & 1 & -7 \\ 8 & 4 & 7\end{bmatrix}.

6

State the location of 5 in the form a_{ij} for the matrix A=\begin{bmatrix} -3 & 5 & -4 \\ 3 & -5 & 1 \\ -6 & -1 & 6 \end{bmatrix}.

7

Consider A=\begin{bmatrix} -5 & -8 & 9 \\ -6 & 2 & 8 \end{bmatrix} and B= \begin{bmatrix} 7 & -9 \\ 3 & 6 \\ -2 & 4 \end{bmatrix}. Find:

a

a_{21} - b_{11}

b

a_{13} \times b_{31}

8

M is a 3 \times 3 matrix. The elements of M are determined by the rule m_{ij}=i + j. Write down the matrix M.

9

A is a 3 \times 2 matrix. The elements of A are determined by the rule a_{ij} = i + 2 j - 2. Write down the matrix A.

10

B is a 4 \times 4 matrix. The elements of B are determined by the rule b_{ij} = i^2 . Write down the matrix B.

11

C is a 3 \times 3 matrix. The elements of C are determined by the rule c_{ij} = 10i + j. Write down the matrix C.

12

A matrix with three less rows than columns has 54 elements. Find the dimensions of this matrix.

13

If a matrix has 10 elements, list the different dimensions it could possibly have.

14

If a matrix has 24 elements, how many different dimensions could it possibly have?

Types of matrices
15

Define:

a

A matrix

b

A square matrix

c

A row matrix

d

An identity matrix

16

If a column matrix contains 6 elements, state the number of rows the matrix has.

17

State the number of columns the identity matrix I_4 contains.

18

Which of the following matrices is a square matrix?

A
\begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}
B
\begin{bmatrix} -3 & -4 & 0 \\ -1 & 2 & 1 \\ 4 & 3 & 5 \end{bmatrix}
C
\begin{bmatrix} 1 & 2 & -5 & -3\end{bmatrix}
D
\begin{bmatrix} 1 & -2 & -1 \end{bmatrix}
19

Which of the following matrices is a zero matrix?

A
\begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}
B
\begin{bmatrix} 0 & -4 & 4 \end{bmatrix}
C
\begin{bmatrix} 4 & 4 \\ 4 & 4\end{bmatrix}
D
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
20

Construct the following:

a

A row matrix consisting of the numbers -4, 1 \text{ and } 4.

b

A column matrix consisting of the numbers 5, -2, 2 \text{ and } 4.

c

A 2 \times 2 identity matrix.

d

A 3 \times 3 zero matrix.

e

A 3 \times 3 diagonal matrix with the numbers 5, 6 \text{ and } 1 on the leading diagonal.

Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

U1.AoS3.1

the concept of a matrix and its use to store, display and manipulate information

U1.AoS3.2

types of matrices (row, column, square, zero, identity) and the order of a matrix

U1.AoS3.7

use matrices to store and display information that can be presented as a rectangular array

U1.AoS3.8

identify row, column, square, zero and identity matrices and determine their order

What is Mathspace

About Mathspace