topic badge

3.10 Dividing of 3 and 4 digit numbers

Interactive practice questions

Let's use an area model to find the answer to $3024\div3$3024÷​3.

a

We set up the area model using a rectangle like this.

$3$3
Total area: $3024$3024

Now if we don't know straight away what $3024\div3$3024÷​3 is, we start with something we do know, like groups of $1000$1000.

Fill in the area used so far if we take out $1000$1000 groups of $3$3.

$1000$1000
$3$3 $\editable{}$
Total area: $3024$3024
b

How much area is remaining?

$1000$1000
$3$3 $3000$3000 $\editable{}$
Total area: $3024$3024
c

What is the width of the second rectangle?

  $1000$1000 $\editable{}$
$3$3 $3000$3000 $24$24
  Total area: $3024$3024
d

Using the area model above, what is $3024\div3$3024÷​3?

Easy
2min

Let's use an area model to find the answer to $4416\div4$4416÷​4.

Easy
3min

Calculate $6000\div3$6000÷​3 by doing the following.

Easy
2min

We're going to break $5958$5958 into $3000+2700+240+18$3000+2700+240+18 to calculate $5958\div3$5958÷​3.

Follow these steps.

Easy
3min
Sign up to access Practice Questions
Get full access to our content with a Mathspace account

Outcomes

4.NBT.B.6

Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

What is Mathspace

About Mathspace