Consider the triangle shown below.
Complete the steps which calculate the length $AC$AC:
$AC^2=AB^2+BC^2$AC2=AB2+BC2
$AC^2=$AC2=$\left(\editable{}\right)^2+\left(\editable{}\right)^2$()2+()2
$AC^2=$AC2=$\editable{}+\editable{}$+
$AC^2=$AC2=$\editable{}$
Hence find the exact length of $AC$AC.
Use the triangle and Pythagoras' theorem to complete the following:
The points $P$P $\left(-6,5\right)$(−6,5), $Q$Q $\left(-6,2\right)$(−6,2) and $R$R $\left(-2,2\right)$(−2,2) are the vertices of a right triangle, as shown on the number plane.
The points $P$P $\left(-1,9\right)$(−1,9), $Q$Q $\left(-1,6\right)$(−1,6) and $R$R $\left(-5,6\right)$(−5,6) are the vertices of a right triangle, as shown on the number plane.