topic badge
iGCSE (2021 Edition)

20.07 Further exponential equations (Extended)

Worksheet
Exponential equations and logarithms
1

Find the interval in which the solution of the following equations will lie:

a
3^{x} = 57
b
3^{x} = 29
c
2^{x} = \dfrac{1}{13}
d
2^{x} = - 5
2

Consider the following equations:

i

Rearrange the equation into the form x = \dfrac{\log A}{\log B}.

ii

Evaluate x to three decimal places.

a

13^{x} = 5

b

5^{x} = \dfrac{1}{11}

c

3^{x} = 2

d

4^{x} = 6.4

e

\left(0.4\right)^{x} = 5

f

5^{x} + 4 = 3129

g

2^{ - x } = 6

h

27^{x} + 4 = 19\,211

3

Consider the equation 4^{ 2 x - 8} = 70.

a

Make x the subject of the equation.

b

Evaluate x to three decimal places.

4

For each of the following incorrect sets of working:

i

Which step was incorrect? Explain your answer.

ii

Rearrange the original equation into the form a = \dfrac{\log A}{\log B}.

iii

Evaluate a to three decimal places.

a

\begin{aligned} 9 ^ {a} &= 40 \\ \log9^{a} &= \log40 & (1)\\ a + \log 9 &= \log40 & (2)\\ a &= \log40 - \log9 & (3)\\ &\approx 0.648 & (4) \end{aligned}

b

\begin{aligned} 2 ^ {a} &= 89 \\ \log2^{a} &= \log89 & (1) \\ a \log 2 &= \log89 & (2)\\ a &= \log_{89} 2 & (3)\\ &\approx 0.154 & (4) \end{aligned}

Applications
5

A certain type of cell splits in two every hour and each cell produced also splits in two each hour. The total number of cells after t hours is given by:

N(t)=2^t

Find the time when the number of cells will reach the following amounts. Round your answers to two decimal places where necessary.

a
32
b

1024

c

3000

6

A population of mice, t months after initial observation, is modelled by:

P(t)=500(1.2^t)
a

State the initial population.

b

By what percentage is the poulation increasing by each month?

c

Find the time when the population reaches 1500 to two decimal places.

7

A population of wallabies, t years after initial observation, is modelled by:

P(t)=800(0.85^t)
a

State the initial population.

b

By what percentage is the poulation decreasing by each year?

c

Find the time when the population reaches 200 to two decimal places.

8

A microbe culture initially has a population of 900\,000 and the population increases by 40\% every hour. Let t be the number of hours passed.

Find the time when the population reaches 7\,200\,000 to three decimal places.

Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

0607E3.10A

Logarithmic function as the inverse of the exponential function y = a^x equivalent to x = log_a y. Solution to a^x = b as x = log b/log a.

What is Mathspace

About Mathspace