topic badge
iGCSE (2021 Edition)

20.02 Transformations of exponential graphs

Worksheet
Exponential graphs and transformations
1

Consider the functions y = 2^{x}, y = 3^{x} and y = 5^{x}.

a
Sketch the three functions on the same set of axes.
b

Determine whether each of the following statements are true:

i

None of the curves cross the x-axis.

ii

They all have the same y-intercept.

iii

All of the curves pass through the point \left(1, 2\right).

iv

All of the curves have a maximum value.

c

State the y-intercept of each curve.

2

Consider the functions y = 2^{x} and y = 2^{x} - 2.

a

Find the y-intercept of y = 2^{x}.

b

Hence, determine the y-intercept of y = 2^{x} - 2.

c

State the horizontal asymptote of y = 2^{x}.

d

Hence, determine the horizontal asymptote of y = 2^{x} - 2.

3

For each of the following exponential functions:

i

Find the y-value of the y-intercept.

ii

State the domain.

iii

State the range.

iv

Sketch the graph of the function.

a
y = 3^{x} - 5
b
y = 4^{x} + 3
4

Consider the function y = 10^{x}.

a

Complete the following table:

x-2-10123
y
b

For any value of x, is y always positive for this equation? Explain your answer.

c

Sketch the graph of the function.

5

Consider the given graph of y = 3^{x}:

a

Describe a transformation of the graph of y = 3^{x} that would obtain y = 3^{x} - 4.

b

Sketch the graph of y = 3^{x} - 4.

-5
-4
-3
-2
-1
1
2
3
4
5
x
-5
-4
-3
-2
-1
1
2
3
4
5
y
6

Consider the given graph of y = 3^{x}:

a

State the asymptote of y = 3^{x}.

b

Hence, find the asymptote of y = 3^{x}-2.

c

How many x-intercepts would \\ y = 3^{x}-2 have?

d

State the domain of y = 3^{x}-2.

e

State the range of y = 3^{x}-2.

-5
-4
-3
-2
-1
1
2
3
4
5
x
-1
1
2
3
4
5
6
7
y
Exponential graphs and transformations (Extended)
7

Consider the function y = - \left(2^{x}\right).

a

Complete the table of values:

x-5-4-3-2-1012345
y
b

Can the value of y ever be zero or positive? Explain your answer.

c

Is y = - \left(2^{x}\right) an increasing or decreasing function?

d

Describe the behaviour of the function as x increases.

e

State the domain.

f

State the range.

8

Find the missing coordinate in each ordered pair so that the pair is a solution of y = - 3^{x}:

a

\left(5, ⬚\right)

b

\left(⬚, - \dfrac{1}{27} \right)

c

\left( - 1 , ⬚\right)

d

\left(⬚, - 81 \right)

9

Consider the function y = - 2.5 \times 4^{x}.

a

Is y = - 2.5 \times 4^{x} an increasing or decreasing function?

b

As x approaches -\infty, what value does y approach?

c

As x approaches \infty, y what value does y approach?

d

State the y-intercept of the graph.

10

Consider the function y = 2 \left(3^{x}\right).

a

Find the y-value of the y-intercept.

b

Can the function value ever be negative? Explain your answer.

c

State the domain.

d

State the range.

e

As x approaches positive infinity, what value does y approach?

f

Sketch the graph of the function.

11

Determine whether following are increasing or decreasing exponential functions:

a

y = 10\times\left(\dfrac{3}{5}\right)^{x}

b

y = 9 \times 3^{x}

c

y = 3 \times \left(0.5\right)^{x}

d

y = 0.2 \times 2^{x}

e

y = 2.2 \times 1.05^{x}

f

y = 50\times\left(\dfrac{7}{4}\right)^{x}

g

y = 500 \times 0.75^{x}

h

y = -5 \times 2^{x}

i

y = -0.5 \times 0.8^{x}

j

y = -2\times\left(\dfrac{1}{4}\right)^{x}

12

Which of the following graphs of exponential functions rises most steeply?

A

y = 2 \times \left(2.1\right)^{x}

B

y = 2 \times \left(2.2\right)^{x}

C

y = 2 \times \left(1.7\right)^{x}

D

y = 2 \times \left(1.2\right)^{x}

13

Of the two functions y = 2^{x} and y = 3 \times 2^{x}, which is increasing more rapidly for x > 0?

14

For each of the following exponential functions:

i

Find the y-value of the y-intercept.

ii

Determine the horizontal asymptote.

iii

Sketch the graph of the function.

a
y = 3^{x }-1
b
y = - 3^{x} - 2
Function from a graph
15

The graph of f \left(x\right) = 9^{x} and another exponential function, g \left(x\right) is shown:

g(x) increasing at exactly the same rate as f \left(x\right), but has a different y-intercept. Write down the equation of function g \left(x\right).

-2
-1
1
2
x
-5
-4
-3
-2
-1
1
2
3
4
5
y
16

For each of the following graphs of exponential functions in the form y = a^{x}, state the equation of the function:

a
-5
-4
-3
-2
-1
1
2
3
4
5
x
1
2
3
4
5
6
7
8
9
10
y
b
-3
-2
-1
1
2
3
x
1
2
3
4
5
6
7
8
9
10
y
c
-3
-2
-1
1
2
3
x
4
8
12
16
20
y
d
-3
-2
-1
1
2
3
x
5
10
15
20
25
30
35
40
y
e
-2
-1
1
2
x
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
y
f
-3
-2
-1
1
2
3
x
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
y
17

For each of the following graphs of exponential functions in the form y = a^{x} + k:

i

State the equation for the horizontal asymptote.

ii

State the equation for the exponential function.

a
-3
-2
-1
1
2
3
x
5
10
15
20
y
b
-3
-2
-1
1
2
3
x
-2
2
4
6
8
10
y
c
-3
-2
-1
1
2
3
x
1
2
3
4
5
6
7
y
d
-3
-2
-1
1
2
3
x
-7
-6
-5
-4
-3
-2
-1
y
Function from a graph (Extended)
18

For each of the given pair of points, find the equation of the exponential function of the form y =A\times a^{x} that passes through the points:

a

P\left(0,3\right) and Q\left(1,6\right)

b

P\left(1,30\right) and Q\left(2,90\right)

c

P\left(1,20\right) and Q\left(2,5\right)

d

P\left(1,30\right) and Q\left(2,10\right)

e

P\left(2,20\right) and Q\left(3,40\right)

f

P\left(2,-18\right) and Q\left(5,-486\right)

Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

0607C3.8

Description and identification, using the language of transformations, of the changes to the graph of y = f(x) when y = f(x) + k, y = f(x + k).

0607E3.8

Description and identification, using the language of transformations, of the changes to the graph of y = f(x) when y = f(x) + k, y = kf(x), y = f(x + k).

What is Mathspace

About Mathspace