Describe how you would move on the coordinate plane from the origin to plot the point \left(9, 14\right).
Find the coordinates of the following points given the description:
The point 9 units below the origin.
The point 3.5 units to the left of the origin.
The point 4 units to the left of \left( - 3 , 6 \right).
The point 7 units to the right of \left( - 1 , - 2 \right).
The point 2 units to the right and 2 units below the point \left(2, 5\right).
The point 6 units to the left and 5 units above the point \left(4, -4\right).
The point 2 units to the right and 1 unit above the point \left(-5, -3\right).
The point 4 units to the left and 3 units below the point \left(6, 7\right).
Starting at the origin, move 4 units left and then 4 units up.
Plot the resulting point on a coordinate plane.
State the coordinates of this point.
For each of the following polygons, write the coordinates of the vertices:
Find the distance between the following pairs of points:
A \left( - 5 , 8\right) and B \left( - 2 , 8\right)
A \left(7, 3\right) and B \left(-1, 3\right)
A \left(6, - 5 \right) and B \left(6, -1\right)
A \left( - 6 , 2\right) and B \left( - 6 , - 7 \right)
A \left(-5, 7\right) and B \left( -2, 7 \right)
A \left( -9, 3 \right) and B \left(-1,3 \right)
A \left( -5, -6 \right) and B \left( 4,-6 \right)
A \left( -8, 5 \right) and B \left( 1, 5 \right)
Which point is furthest from the origin?
\left(0, - 3 \right)
\left(5, 0\right)
\left(0, 4.5\right)
\left( - 4 , 0\right)
How many units above the origin is the point \left( - 6 , 1\right) located?
Consider the points: A \left( - 4 , 8\right), B \left( - 7 , 8\right) and C \left( - 7 , 1\right)
Plot the points on a coordinate plane.
Find the length of \overline{AB}.
Find the length of \overline{BC}.
A triangle has points A \left(1, 2\right), B \left( - 2 , - 3 \right) and C \left(6, - 3 \right).
Plot the triangle ABC on a coordinate plane.
Find the perpendicular height of the triangle if \overline{BC} is the base.
Find the length of base \overline{BC}.
A rectangle has points A \left( - 3 , - 4 \right), B \left(5, - 4 \right), C \left(5, 4\right) and D \left( - 3 , 4\right).
Plot the rectangle ABCD on a coordinate plane.
Find the length of the following sides:
\overline{AB}
\overline{BC}
\overline{CD}
\overline{DA}