topic badge

1.05 Evaluating expressions

Worksheet
Expressions with powers
1

Explain how to evaluate 4^{5}.

2

Explain how to determine if the answer is positive or negative when evaluating an expression with an integer power and negative base such as \left( - 7 \right)^{3}.

3

Consider the expressions \left( - 3 \right)^{2} and - 3^{2}.

a

Explain how to evaluate - 3^{2}.

b

Explain how to evaluate (- 3)^2.

4
a

Write 4^{3} in expanded form.

b

Now, evaluate 4^{3}.

5
a

Write \left( -2 \right)^{5} in expanded form.

b

Now, evaluate \left( -2 \right)^{5}.

6

Evaluate:

a
3^{1}
b
1^{3}
c
2^{6}
d
- 6^{3}
e

\left( - 4 \right)^{3}

f

- 5^{3}

g
- 15^{2}
h
- \left( - 8 \right)^{2}
7

Evaluate:

a
5^{2} + 3^{3}
b
2^{2} + 4^{3}
c
7^{2} - 2^{2}
d
4^{3} - 2^{3}
e
12^{2} - 2^{2}
f
\left( - 2 \right)^{3} + 5^{2}
g

\left( - 11 \right)^{2} - \left( - 9 \right)^{2}

h
- \left( - 3 \right)^{3} + 8^{2}
8

Evaluate:

a
1 + \left(3 + 2\right)^{2}
b
\left(10 + 2 \right) - 2^{3}
c
4 - \left(5 - 2\right)^{2}
d
6 - \left(12 - 3^{2}\right)
e
9 - 2^{2} \times \left( - 7 \right)
f
\left(2 - 5\right)^{2} \times \left( - 21 + 14\right)
g
- \left( - 4 \right)^{3} - \left( - 10 \right)^{2} - 122
h
150 + 6^{2} - \left( - 10 + 8 \right)^{3}
9

Evaluate:

a

3^{3} \times 3^{2}

b
\left( - 9 \right) \times \left( - 6 \right)^{2}
c

\left( - 2 \right)^{3} \times 3^{4}

d

\left( - 3 \right)^{2} \times \left( - 2 \right)^{2}

e

\dfrac{3^{5}}{3^{3}}

f

\dfrac{4^{4}}{4^{2}}

g

\dfrac{(-2)^{4}}{(-2)^{3}}

h

\dfrac{(-5)^{5}}{5^{3}}

10

Ralph tried to evaluate the expression 2 \times \left(3+2\right)^2. He thought that he had the right answer and submitted the following to his teacher: \begin{aligned} 2 \times \left(3+2\right)^2 &= 2 \times \left(5\right)^2 \\ &= 10^2 \\ & = 100 \end{aligned}

a

State the error Ralph made.

b

Write the correct work and answer.

Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

MA.6.NSO.3.3

Evaluate positive rational numbers with natural number exponents.

What is Mathspace

About Mathspace