Given that $f\left(x\right)=x-7$f(x)=x−7 and $g\left(x\right)=8x+7$g(x)=8x+7, find $\left(fg\right)\left(x\right)$(fg)(x) in expanded form.
Let $f\left(x\right)=x^2-1$f(x)=x2−1 and $g\left(x\right)=5x-1$g(x)=5x−1.
Let $f\left(x\right)=x^2+6$f(x)=x2+6 and $g\left(x\right)=5x-3$g(x)=5x−3.
Let $f\left(x\right)=-5x+3$f(x)=−5x+3 and $g\left(x\right)=x^2-7$g(x)=x2−7.