topic badge
Australia
Year 10

1.07 Factorising binomial products

Worksheet
Grouping in pairs
1

Factorise:

a
5 \left(a + b\right) + v \left(a + b\right)
b
x \left(y - z\right) - w \left(y - z\right)
c
5 y \left( 4 w + 3 x\right) - z \left( 4 w + 3 x\right)
d
2 y \left( 2 x^{2} + 3 z\right) - \left( 2 x^{2} + 3 z\right)
e
3 f \left(g + h\right) + \left(g + h\right)^{2}
f
8 y \left(y - 4\right) + 3 \left(4 - y\right)
g
\left( 2 c - d\right) \left(c + 5 d\right) - 3 \left(d - 2 c\right)
h
3x^2\left(x+4y\right)-5y\left(x+4y\right)
2

Factorise:

a
8 x + x z - 16 y - 2 y z
b
24 + 3 y + 8 x + x y
c
7 x y + w x + 7 y z + w z
d
x^{2} + 2 x + 5 x + 10
e
x^{2} - 3 x + 8 x - 24
f
2 m p + 6 + 3 p + 4 m
g
a^{3} + 8 a^{2} + a + 8
h
3 p q^{2} - 11 y p q + 3 r s q - 11 y r s
i
4 x + 24 y z + 32 x y + 3 z
j
2x+18yz+12xy+3z
Perfect squares
3

Factorise:

a
a^2+14a+49
b
g^2-12g+36
c
x^2+24x+144
d
y^2-18y+81
e
z^2-4z+4
f
4w^2+20w+25
g
64c^2+112c+49
h
9n^2-24n+16
4

Factorise:

a
q^{2} + 2 q t + t^{2}
b
u^{2} - 2 u q + q^{2}
c
b^2-2br+r^2
d
x^2+6x+9
e
c^2-4c+4
f
64+16e+e^2
g
49-14p+p^2
h
16w^2-40w+25
i
64r^2+48r+9
j
\dfrac{1}{4}-3d+9d^2
5

A square has an area of \left( t^2+14t+49 \right) \text{ cm}^2.

a
Find the side length of the square.
b
Find the value of t if the perimeter of the square is 36\text{ cm}.
Difference of two squares
6

One linear factor of x^{2} - 16 is x- 4. Find the other factor.

7

What can we multiply z + 7 by to give the difference of two squares?

8

Factorise:

a
x^{2} - y^{2}
b
n^{2} - 25
c
v^{2} - 1
d
121 - v^{2}
e
x^{2} - \dfrac{1}{4}
f
x^{2} - \dfrac{25}{121}
g
16 - 9 y^{2}
h
x^{2} y^{2} - 49
i
25 m^{2} - 49
j
81 x^{2} - 16 y^{2}
k
7 x^{2} - 63
l
45 t^{2} - 20
9

Using the difference of two squares, evaluate the following:

a
65^{2} - 63^{2}
b
99^2-97^2
c
45^2-42^2
d
58^2-52^2
10

Find the value of the following by rewriting in the form \left(x + y\right) \left(x - y\right):

a
504\times 49
b
304 \times 296
11

Consider the shaded area shown:

a

Find the area of the shaded region.

b

State whether the following rectangles have the same area as the shaded region from part a.

i
ii
iii
Mixed factorisations
12

Factorise:

a
3x^2 y-6y^4+9x^2 y^3
b
16x^2 y^2+24xyz+9z^2
c
121c^2-49d^2
d
3x^2y+x^2 z+3y^2+yz
e
a^2+2ab+b^2-c^2
f
8a^2b^4+12bc^2
g
\left(b+4\right)^2-\left(3-b\right)^2
h
14h^3 p^2 r+21h^5 p^2+49hp^4
i
8w^2-32wt^2+3wt-12t^3
j
16q^4+24q^2r+9r^2
k
48df^2-3dh^2
l
128t^3-18s^4t
m
18j^2+60jk+50k^2
n
x^2 y+7x^2-y-7
13

Factorise x^4-1.

14

Factorise:

a
x^4-8x^2+16
b
a^4-18a^2+81
c
16y^4-72y^2+81
d
25-\dfrac{20}{z}+\dfrac{4}{z^2}
Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

ACMNA230

Factorise algebraic expressions by taking out a common algebraic factor

ACMNA231

Simplify algebraic products and quotients using index laws

ACMNA232

Apply the four operations to simple algebraic fractions with numerical denominators

ACMNA233

Expand binomial products and factorise monic quadratic expressions using a variety of strategies

What is Mathspace

About Mathspace