topic badge
Australia
Year 10

1.09 Completing the square

Worksheet
Monic complete the square
1

Find the missing coefficient or term so that the following expressions form a perfect square:

a
x^{2}-⬚ x + 81
b

x^{2} + 10 x+⬚

c

x^{2}-⬚x+16

d

x^{2}-⬚x+121

2

For each of the following expressions, determine the value of k to make the expression a perfect square:

a
x^{2} + x+k
b
x^{2} - 2 x+k
c
x^{2} + 19 x+k
d
x^{2} -\dfrac{4}{5} x+k
3

Complete the following perfect squares:

a

\left(x + ⬚\right)^{2} = x^{2} + 20 x + ⬚

b

\left(x - ⬚\right)^{2} = x^{2} - \dfrac{4}{3} x + ⬚

c

x^{2} + 4 x + ⬚ = \left(x + ⬚\right)^{2}

d

x^{2} - 5 x + ⬚ = \left(x - ⬚\right)^{2}

e

x^{2}-\dfrac{7}{4} x+⬚=\left(x-⬚\right)^2

f

\left(x - ⬚\right)^{2} = x^{2} - \dfrac{3}{2} x + ⬚

4

Rewrite the following quadratics in the form \left(x + b\right)^{2} + c using the method of completing the square:

a

x^{2} + 18 x

b

x^{2} - 8 x

c

x^{2} + 10 x + 31

d

x^{2} + 14 x + 47

e

x^{2} - 10 x + 30

f

x^{2} - 18 x + 77

g

x^{2} + 9 x + 16

h

x^{2} - 7 x + 15

5

Factorise:

a

\left( x - 3 \right)^{2} - 1

b

\left( x + 4 \right)^{2} - 9

c

\left( x + 5 \right)^{2} - 49

d

\left( x - 1 \right)^{2} - 3

6

Factorise the following quadratics using the method of completing the square:

a
x^{2} + 6 x + 4
b
x^{2} - 8 x + 11
c

x^{2} + 24 x + 63

d

x^{2} - 20 x + 19

e

x^{2} + 42 x + 185

f
x^{2} - 6 x + 5
g

x^{2} - 28 x + 115

h

x^{2} + 11 x + 10

i

x^{2} - 11 x + 30

j

\left(x + 3\right) \left(x + 19\right) - 17

7

Find the centre and radius of the following circles:

a
x^2-8x+y^2+4y-5=0
b
x^2+3x+y^2-12y+26=0
Non-monic complete the square
8

Complete the following statements:

a

3 x^{2} + 6 x - 8=⬚\left(x^2 + 2x\right)-8

b

2 x^{2} - 10 x+1=⬚\left(x^2 - 5x\right)+1

c

4 x^{2} +12 x - 6=⬚\left(x^2 + ⬚\right)-6

d

6 x^{2} + 24x - 7=⬚\left(x^2 + ⬚\right)-7

9

Complete the working to rewrite the following in terms of a\left(x + b\right)^2 + c by completing the square:

a
\begin{aligned} 5x^2-10x+4 &= ⬚\left(x^2-2x \right)+4 \\ &=⬚ \left( x^2-2x+⬚ \right)+4-⬚\\ &= ⬚\left(x-⬚ \right)^2-1 \end{aligned}
b
\begin{aligned} 6x^2+36x-1 &= ⬚\left(x^2+⬚ \right)-1 \\ &=⬚ \left( x^2+6x+⬚ \right)-1-⬚\\ &= ⬚\left(x+⬚ \right)^2-⬚ \end{aligned}
10

Rewrite the following in the form a\left(x + b\right)^2 + c by completing the square:

a
2x^2+8x-7
b
5x^2+20x-9
c
4x^2-16x+3
d
10x^2+20x-11
e
7x^2-14x+1
f
9x^2+54x-2
g

3 x^{2} + 33 x + 88

h

5 x^{2} + 5 x + 1

i
4 x^{2} - 11 x + 7
j
3 x^{2} + 9 x + 8
k
3x^2-27x+58
l
2x^2-7x+6
11

Rewrite the following in the form a\left(\left(x + b\right)^2 + c\right) by completing the square:

a
4 x^{2} + 20 x + 16
b
4x^2+20x+28
12

Factorise:

a

3\left( x - 1 \right)^{2} - 12

b

2\left( x + 4 \right)^{2} - 50

c

4\left( x + 2 \right)^{2} - 1

d

-2\left( x - 9 \right)^{2} +32

e

-4\left( x + 2 \right)^{2} + 16

f

9\left( x + 2 \right)^{2} - 4

g

4\left( x + 3 \right)^{2} - 5

h

2\left( x - 1 \right)^{2} - 3

13

Factorise the following by completing the square to write in the form y = c \left(x + a\right) \left(x + b\right):

a
y = 3 x^{2} + 42 x + 99
b
y=3x^2-12x-36
14

Factorise 2 x^{2} + 11 x + 9 by completing the square to write in the form \left(kx + a\right) \left(x + b\right).

15

A cube has a surface area of 6 x^{2} + 36 x + 54. What is a length of one of the sides?

Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

ACMNA230

Factorise algebraic expressions by taking out a common algebraic factor

ACMNA231

Simplify algebraic products and quotients using index laws

ACMNA232

Apply the four operations to simple algebraic fractions with numerical denominators

ACMNA233

Expand binomial products and factorise monic quadratic expressions using a variety of strategies

What is Mathspace

About Mathspace