topic badge
Australia
Year 10

1.03 Negative indices

Worksheet
Negative indices
1

Consider the following expressions:

i

Identify the base.

ii

Identify the power.

a
10^{ - 7 }
b
2^{ - 4 }
c
13^{-10}
d
\left(-5\right)^{-8}
2

Is 2^{ - 3 } less than or greater than 1?

3

Complete the following tables:

a
2^{-4}2^{-3}2^{-2}2^{-1}2^{0}2^{1}2^{2}2^{3}2^{4}
\dfrac{1}{2}12
b
10^{-4}10^{-3}10^{-2}10^{-1}10^{0}10^{1}10^{2}10^{3}10^{4}
\dfrac{1}{100}100
c
3^{-4}3^{-3}3^{-2}3^{-1}3^{0}3^{1}3^{2}3^{3}3^{4}
27
4

Express the following with positive indices:

a

a^{ - 9 }

b

\dfrac{1}{a^{ - n }}

c

\dfrac{a^{ - 9 }}{4}

d

\dfrac{a^{ - n }}{b^{ - m }}

e

p^{ - 2 }

f

3 x^{ - 4 }

g

7 x^{ - 9 }

h

p^{-2}q^3

i

8p^{-3}

j

2x^{-8}y^3

k
\dfrac{b^{-7}}{6c^{-3}}
l
m^{-5}n^{-4}p^4
m
3a^{4}b^{-5}c^{-7}
n
4^{-2}k^{-3}l^{7}
o
\dfrac{f^{-7}}{g^{-2}h^8}
p
\dfrac{s^4 t^{-9}}{5u^{-6}}
5

Express the following without fractions:

a
\dfrac{1}{u^{4}}
b
\dfrac{2}{r^6}
c
\dfrac{x}{y^{2}}
d
\dfrac{4}{p^6q^7}
6

Simplify the following, giving your answers with positive indices:

a

5 y^{9} \times 4 y^{ - 3 }

b

7 a^{4} \times 4 a^{-2}

c

5x^4\times \left(-3x^{-8}\right)

d

3y^{-2}\times 4y^{-3}

e

2h^{-4}\times 4h^{11}

f

3y^{-2}\times 2y^{-5}

g

-4y^2\times \left(-4y^{-5}\right)

h

\left(5mp\right)^2\times mp^{-2}

i

\dfrac{9 x^{2}}{3 x^{9}}

j

\dfrac{15x^3}{5x^7}

k
12x^5 \div 4x^{-3}
l
9c^6 \div 6c^8
m
\dfrac{15h^2}{12h^{-7}}
n
\dfrac{12x^5}{4x^{-3}}
o
\dfrac{21p^{-4}}{14p^{-3}}
p
\dfrac{36w^{-6}}{16w^4}
7

Simplify the following, giving your answers with positive indices:

a

\left( 2 m\right)^{ - 3 }

b

\left(4m^{-6}\right)^4

c

\left(3p^{-4}\right)^{-2}

d

\left( 3 y^{2}\right)^{ - 2 }

e

\left(\dfrac{y}{4}\right)^{ - 3 }

f

\left(\dfrac{x^{5}}{y^{4}}\right)^{ - 1 }

g

\left(\dfrac{x^{7}}{y^{9}}\right)^{ - 4 }

h

\dfrac{20 x^{3}}{4 x^{ - 2 }}

i

\dfrac{10 x^{ - 7 }}{2 x^{ - 3 }}

j

\left(\dfrac{z}{3}\right)^{ - 4 }

k

\left(\dfrac{p^{3}}{q^{7}}\right)^{ - 1 }

l

\left(\dfrac{x^{-4}}{y^{-8}}\right)^{ - 2 }

8

Evaluate the following:

a

2^{-2} \times 24

b

2 \times 3^{-2}

c

10 \div 2^{-1} +3

d

20 \times 2^{-2}+6

e

3^{-1} + 4^{-1}

f

3 \times 4^{-2}+5 \times 2^{-4}

g

10^2 \times 5^{-2}

h

\left(7+3^2\right)\times 2^{-2}

9

Solve the following equations for n:

a

\dfrac{1}{25} = 5^{n}

b

\dfrac{1}{8} = 2^{n}

c

\left( x^{3} y^{ - 5 }\right)^{n} = x^{ - 12 } y^{20}

d

\left( a^{-5} b^{ 3 }\right)^{n} = a^{ 15 } b^{-9}

10

Complete the following:

\left(x^4 y^⬚\right)^⬚=\dfrac{y^{12}}{x^{16}}
11

Simplify:

a

2 y^{6} \times 4 y^{7} \times 4 y^{ - 5 }

b

6 y^{7} \times 2 y^{ - 5 } \times 5 y^{3}

c

2 x^{-2} \times 5 x^{ 5 } \times 4x^{-5}

d

12 x^{-9} \times 2 x^{ 4} \times 3x^{-2}

e

4 y^{3} \times 3 y^{8} \div 2 y^{ - 1 }

f

8 y^{10} \div 2 y^{ - 4 } \div y^{3}

g

40 x^{-2} \div 5 x^{8 } \div 4x^{-9}

h

14 x^{-8} \div 2 x \times 3x^{6}

12

Simplify:

a

\left({3x^{-4}\times 2x^2}\right)^{2}

b

\left({10x^{3}y^{-4}}\right)^{2}

c

\left(4x^{3}\right)^{-1}\times\left( y^{-2}\right)^{-3}

d

\left(10x^3\right)^{3}\times\left( 2x^4y^{3}\right)^{-2}

e

\left(\dfrac{27x^{-3}y^6}{3x^2y^{-2}}\right)^{2}

f

\left(\dfrac{18n^3m^7}{3mn^2}\right)^{-2}

13

Answer the following questions:

a

What is 0^4 equal to?

b

Explain why 0^{-4} is undefined.

14

A student was writing 5a^{-1} without negative indices and wrote 5a^{-1}=\dfrac{1}{5a}. Explain why their working is incorrect, and write the correct answer.

Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

ACMNA231

Simplify algebraic products and quotients using index laws

What is Mathspace

About Mathspace