topic badge

6.06 The point of intersection

Worksheet
Points of intersection
1

For each of the following, state the coordinates of the point of intersection of the two lines:

a
-5
-4
-3
-2
-1
1
2
3
4
5
6
7
x
-5
-4
-3
-2
-1
1
2
3
4
5
6
7
y
b
-4
-3
-2
-1
1
2
3
4
x
-4
-3
-2
-1
1
2
3
4
y
c
-7
-6
-5
-4
-3
-2
-1
1
2
x
-8
-7
-6
-5
-4
-3
-2
-1
1
2
y
d
-2
-1
1
2
3
4
5
6
7
8
x
-2
-1
1
2
3
4
5
6
7
8
9
y
e
-2
-1
1
2
3
4
5
6
x
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
1
y
f
-2
-1
1
2
3
4
5
6
7
8
9
x
-2
-1
1
2
3
4
5
6
7
8
9
y
g
-3
-2
-1
1
2
3
4
5
6
7
8
x
-9
-8
-7
-6
-5
-4
-3
-2
-1
1
2
y
h
-8
-7
-6
-5
-4
-3
-2
-1
1
2
x
-8
-7
-6
-5
-4
-3
-2
-1
1
2
y
i
-4
-3
-2
-1
1
2
3
4
x
-2
-1
1
2
3
4
5
6
7
y
j
-1
1
2
3
4
5
6
7
8
9
10
11
x
-4
-3
-2
-1
1
2
3
4
5
6
y
2

The graph of y = 3 x - 4 is shown on the coordinate plane:

a

Consider the horizontal line with equation y = 8.

State the point of intersection of the graph of y = 3 x - 4 with the line y = 8.

b

Hence determine the value of x that solves the equation 3 x - 4 = 8.

-4
-3
-2
-1
1
2
3
4
x
-2
-1
1
2
3
4
5
6
7
8
9
y
3

The graph of y = -2 x - 4 is shown on the coordinate plane:

a

State the point of intersection of the graph with the line y = - 12.

b

Hence determine the value of x that solves the equation - 2 x - 4 = - 12.

-5
-4
-3
-2
-1
1
2
3
4
5
6
x
-14
-12
-10
-8
-6
-4
-2
2
y
4

The graph of y = -\dfrac{x}{2} + 6 is shown on the coordinate plane:

a

In order to solve the equation \\- \dfrac{x}{2} + 6 = 8, state the equation of the other line that must be graphed on the axes.

b

Hence find the solution to - \dfrac{x}{2} + 6 = 8.

c

Explain why it is not necessary to write the y-value in your answer to part (b).

-6
-5
-4
-3
-2
-1
1
2
3
x
-1
1
2
3
4
5
6
7
8
9
10
y
5

The graph of y = \dfrac{4x}{3} + 5 is shown on the coordinate plane:

a

In order to solve the equation \\ \dfrac{4x}{3} + 5 = 13, state the equation of the other line that must be graphed on the axes.

b

Hence find the solution to \dfrac{4 x}{3} + 5 = 13.

-4
-3
-2
-1
1
2
3
4
5
6
7
x
-1
1
2
3
4
5
6
7
8
9
10
11
12
13
y
6

Emma wishes to find the point of intersection of the following lines:

y = -2 x + 3 \\ y = -1
a

Complete the table of values for \\y = -2 x + 3:

x-101
y
b

Sketch the graphs of both lines on a coordinate plane.

c

Hence determine the point of intersection.

7

Scott wishes to find the point of intersection of the following lines:

y = 2 x + 1 \\ y = -3 x + 11
a

Complete the table of values for \\y = 2 x + 1:

x-101
y
b

Complete the table of values for \\y = -3 x + 11:

x-101
y
c

Sketch the graphs of both lines on a coordinate plane.

d

Hence determine the point of intersection.

8

For each of the following pairs of equations:

i

Sketch the graph of the two lines on the same coordinate plane.

ii

Find the coordinates of the point of intersection.

a

y = 3

x = - 3

b

y = 2 x + 2

x = - 3

c

y = 3 x - 4

y = 5

d

y = - 2 x + 4

y = 8

e

y = 3 x + 3

x = - 1

f

y = x + 3

y = 3 x - 5

g

y = - x + 6

y = x + 2

h

y = - x + 2

y = 2 x - 4

i

y = - 4 x + 2

y = 3 x - 12

j

y = \dfrac{x}{2} + 3

y = 3 x - 2

k

y = \dfrac{x}{2} - 2

y = - 2 x + 3

l

y = 5 x + 6

y = 2 x + 12

m

y = 3 x - 3

y = - 4 x + 11

n

y = x - 9

y = - x - 7

o

y = 2 x - 7

y = - \dfrac{x}{2} - 2

p

y = \dfrac{x}{2} + 5

y = 3 x

Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

VCMNA283

Plot linear relationships on the Cartesian plane with and without the use of digital technologies

VCMNA284

Solve linear equations using algebraic and graphical techniques. Verify solutions by substitution

What is Mathspace

About Mathspace