The natural base $e$e (Euler’s number) is defined as $e=\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n$e=limn→∞(1+1n)n
The table shows the value of $\left(1+\frac{1}{n}\right)^n$(1+1n)n using various values of $n$n.
$n$n | $\left(1+\frac{1}{n}\right)^n$(1+1n)n |
---|---|
$1$1 | $2$2 |
$100$100 | $1.01^{100}=2.704813$1.01100=2.704813 ... |
$1000$1000 | $1.001^{1000}=2.716923$1.0011000=2.716923 ... |
$10000$10000 | $1.0001^{10000}=2.718145$1.000110000=2.718145 ... |
$100000$100000 | $1.00001^{100000}=2.718268$1.00001100000=2.718268 ... |
Evaluate $\left(1+\frac{1}{n}\right)^n$(1+1n)n for $n=1000000$n=1000000, correct to six decimal places.
Which of the following is the closest approximation of $e$e?
$2.718280821$2.718280821
$2.718281828$2.718281828
$2.718281820$2.718281820
$2.718281818$2.718281818