Consider the polynomial $P\left(x\right)=2x^3-2x^2-9x-6$P(x)=2x3−2x2−9x−6.
Determine whether the following statement is true or false:
$\frac{3}{2}$32 is a possible rational zero of $P\left(x\right)=2x^3-2x^2-9x-6$P(x)=2x3−2x2−9x−6
True
False
Consider the polynomial $P\left(x\right)=3x^4+8x^3-9x^2-5x+6$P(x)=3x4+8x3−9x2−5x+6.
Consider the polynomial $P\left(x\right)=6x^4+4x^3-3x^2-5x-4$P(x)=6x4+4x3−3x2−5x−4.
Consider the polynomial $P\left(x\right)=x^3+x^2-17x+15$P(x)=x3+x2−17x+15.