topic badge

10.04 Polygons in the coordinate plane

Lesson

Many geometrical properties of figures can either be verified or proved using coordinate geometry.

There is a range of established formulas that become useful in this endeavor. You may wish to go back to a previous lesson to review each one.

  • The distance formula given by $d=\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}$d=(x2x1)2+(y2y1)2
  • The slope formula $m=\frac{y_2-y_1}{x_2-x_1}$m=y2y1x2x1
  • The perpendicular property $m_1*m_2=-1$m1*m2=1
  • The parallel property $m_1=m_2$m1=m2
  • The midpoint formula is given by $\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$(x1+x22,y1+y22)

In the lesson, we will focus on triangles and quadrilaterals. You should be familiar with the properties of side lengths and angles of the following polygons.

Quadrilaterals:

  1. Parallelogram
  2. Rhombus
  3. Rectangle
  4. Square
  5. Kite
  6. Trapezoid

Triangles:

  1. Isosceles
  2. Scalene
  3. Equilateral
  4. Right-angled
  5. Acute
  6. Obtuse

 

Worked examples

Checking a parallelogram

Show that the quadrilateral with vertices given by $P\left(2,3\right),Q\left(3,6\right),R\left(6,8\right),S\left(5,5\right)$P(2,3),Q(3,6),R(6,8),S(5,5) is a parallelogram.

A parallelogram is a quadrilateral with both pairs of opposite sides parallel.

Think: If opposite sides are parallel then they must have the same slope. We need $\overline{PQ}\parallel\overline{RS}$PQRS and $\overline{QR}\parallel\overline{PS}$QRPS

Do: We can check the slopes of $\overline{PQ}$PQ and $\overline{RS}$RS and the slopes of the line segments $\overline{QR}$QR and $\overline{PS}$PS.

$m_{\overline{PQ}}=\frac{6-3}{3-2}=3$mPQ=6332=3

$m_{\overline{RS}}=\frac{5-8}{5-6}=3$mRS=5856=3

$\overline{PQ}\parallel\overline{RS}$PQRS

$m_{\overline{QR}}=\frac{8-6}{6-3}=\frac{2}{3}$mQR=8663=23

$m_{\overline{PS}}=\frac{5-3}{5-2}=\frac{2}{3}$mPS=5352=23

$\overline{QR}\parallel\overline{PS}$QRPS

Reflect: Both pairs of opposite sides are parallel. Hence, the quadrilateral is a parallelogram.

 

Checking a right triangle

Prove that $A\left(-4,-4\right),B\left(-1,-1\right),C\left(1,-3\right)$A(4,4),B(1,1),C(1,3) are the vertices of a right triangle.

Think: To be a right triangle, we need to have one pair of perpendicular sides. The easiest way to do this is to check for the perpendicular property $m_1m_2=-1$m1m2=1 given above for $m_{\overline{AB}}$mAB$m_{\overline{AB}}$mAB, and $m_{\overline{AB}}$mAB.

Do: The three slopes are determined as

$m_{\overline{AB}}=\frac{-1-\left(-4\right)}{-1-\left(-4\right)}=1$mAB=1(4)1(4)=1

$m_{\overline{BC}}=\frac{-3-\left(-1\right)}{1-\left(-1\right)}=-1$mBC=3(1)1(1)=1

$m_{\overline{AC}}=\frac{-3-\left(-4\right)}{1-\left(-4\right)}=\frac{1}{5}$mAC=3(4)1(4)=15

Reflect: Note that $m_{\overline{AB}}\times m_{\overline{BC}}=-1$mAB×mBC=1 and so $\overline{BC}$BC is perpendicular to $\overline{AB}$AB, and the triangle is right-angled.  

 

Checking a rhombus

Prove that the quadrilateral with vertices $A\left(4,9\right),B\left(5,13\right),C\left(9,14\right),D\left(8,10\right)$A(4,9),B(5,13),C(9,14),D(8,10) is a rhombus.

Think: A rhombus must have all sides of equal length and opposite sides must be parallel. It does not need to be a square, so the adjacent sides do not need to be perpendicular.

Do: Let's look at distances first, to ensure that they are all the same. We find:

$\overline{AB}=\sqrt{1^2+4^2}=\sqrt{17}$AB=12+42=17

$\overline{BC}=\sqrt{4^2+1^2}=\sqrt{17}$BC=42+12=17

$\overline{CD}=\sqrt{1^2+4^2}=\sqrt{17}$CD=12+42=17

$\overline{DA}=\sqrt{4^2+1^2}=\sqrt{17}$DA=42+12=17

Next, let's calculate slope to ensure that opposite sides are parallel,

$m_{\overline{AB}}=\frac{4}{1}=4$mAB=41=4

$m_{\overline{CD}}=\frac{-4}{-1}=4$mCD=41=4

so $m_{\overline{AB}}\parallel m_{\overline{CD}}$mABmCD

$m_{\overline{BC}}=\frac{1}{4}$mBC=14

$m_{\overline{DA}}=\frac{1}{4}$mDA=14

so $m_{\overline{BC}}\parallel m_{\overline{DA}}$mBCmDA

Reflect: The opposite side pairs are parallel and all sides are the same length, so this is indeed a rhombus.

 

Practice questions

Question 1

Consider the triangle shown below:

Loading Graph...

  1. Determine the slope of the line segment $AB$AB.

  2. Similarly, determine the slope of side $AC$AC:

  3. Next determine the length of the side $AB$AB.

  4. Now determine the length of the side $AC$AC.

  5. Hence state the type of triangle that has been graphed. Choose the most precise answer.

    An acute isosceles triangle.

    A

    An isosceles right triangle.

    B

    A scalene right triangle.

    C

    An equilateral triangle.

    D

Question 2

The four points $A$A$\left(-8,-4\right)$(8,4), $B$B$\left(-5,0\right)$(5,0), $C$C$\left(0,-2\right)$(0,2) and $D$D$\left(-3,-6\right)$(3,6) are the vertices of a quadrilateral.

  1. Plot the quadrilateral.

    Loading Graph...

  2. Find the slope of $\overline{AB}$AB.

  3. Find the slope of $\overline{BC}$BC.

  4. Find the slope of $\overline{CD}$CD.

  5. Find the slope of $\overline{DA}$DA.

  6. Which segments are parallel?

    $\overline{DC}$DC and $\overline{AB}$AB

    A

    $\overline{AD}$AD and $\overline{AB}$AB

    B

    $\overline{DC}$DC and $\overline{BC}$BC

    C

    $\overline{BC}$BC and $\overline{AD}$AD

    D
  7. What type of quadrilateral is $ABCD$ABCD?  Choose the most precise answer.

    A square

    A

    A rhombus

    B

    A rectangle

    C

    A parallelogram

    D

Question 3

$A$A $\left(2,1\right)$(2,1), $B$B $\left(7,3\right)$(7,3) and $C$C $\left(7,-5\right)$(7,5) are the vertices of a triangle.

  1. Which side of the triangle is a vertical line?

    $BC$BC

    A

    $AB$AB

    B

    $AC$AC

    C
  2. Determine the area of the triangle using $A=\frac{1}{2}bh$A=12bh.

 

Outcomes

I.G.GPE.4

Use coordinates to prove simple geometric theorems algebraically.

I.G.GPE.7

Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g. Using the distance formula.

What is Mathspace

About Mathspace