The derivative of $f\left(x\right)$f(x) is $\frac{1}{x}$1x.
Which of the following could be the function? Select all the correct options.
$f\left(x\right)=k\ln x$f(x)=klnx
$f\left(x\right)=\ln\left(\left|kx\right|\right)$f(x)=ln(|kx|)
$f\left(x\right)=\ln kx$f(x)=lnkx for $k<0$k<0, $x>0$x>0
$f\left(x\right)=\ln x$f(x)=lnx
$f\left(x\right)=\ln kx$f(x)=lnkx for $k>0$k>0, $x<0$x<0
State the primitive function of $\frac{6}{x}$6x.
Use $C$C as the constant of integration.
Determine $\int\frac{4}{x}dx$∫4xdx.
Use $C$C as the constant of integration.
Determine $\int\frac{-7}{x}dx$∫−7xdx.
Use $C$C as the constant of integration.