Consider the probability density function drawn below.
State the function $p\left(x\right)$p(x).
$p\left(x\right)=$p(x)= | $\editable{}$ when $\editable{}\le x\le\editable{}$≤x≤ |
$\editable{}$ otherwise |
Use integration to determine the expected value of a random variable $X$X if it is distributed according to $p\left(x\right)$p(x).
Consider the probability density function drawn below.
Consider the probability density function drawn below.
Consider the probability density function $p\left(x\right)=\frac{1}{40}$p(x)=140 when $10\le x\le50$10≤x≤50.