Consider the function $f\left(x\right)=2x^3-12x^2+18x+3$f(x)=2x3−12x2+18x+3.
Solve for the $x$x-coordinates of the turning points of the function.
Determine $f''\left(1\right)$f′′(1).
Determine $f''\left(3\right)$f′′(3).
State the coordinates of the local maximum.
State the coordinates of the local minimum.
State the absolute maximum value of the function within the range $0\le x\le7$0≤x≤7.
State the absolute minimum value of the function within the range $0\le x\le7$0≤x≤7.
Consider the equation $y=9x^2+18x-16$y=9x2+18x−16.
Consider the equation $y=-x^2+8x-21$y=−x2+8x−21 over the domain $\left[0,6\right]$[0,6].
Consider the equation $y=2\left(x+5\right)^3+3$y=2(x+5)3+3.