topic badge

9.08 Differentiation of exponential functions

Lesson

We have established the result that if $y=e^x$y=ex, then the derivative is given by:

$\frac{dy}{dx}=e^x$dydx=ex

We now use the chain rule to find the derivative of the more general function given by $y=e^{ax}$y=eax:

 

Setting $u=ax$u=ax, we have that $y=e^u$y=eu. We then observe that:

$\frac{du}{dx}=a$dudx=a and $\frac{dy}{du}=e^u$dydu=eu

Putting this together, we have that:

$\frac{dy}{dx}$dydx $=$= $\frac{dy}{du}\times\frac{du}{dx}$dydu×dudx
  $=$= $e^u\times a$eu×a
  $=$= $ae^{ax}$aeax

Worked examples

Example 1

Differentiate $y=e^{5x}$y=e5x.

Think: The derivative of $y=e^x$y=ex is $e^x$ex. Since  $5x$5x is a function within $y=e^x$y=ex therefore we can use the chain rule to differentiate $y=e^{5x}$y=e5x.

Do:

$\frac{dy}{dx}$dydx $=$= $e^{5x}\times5$e5x×5
  $=$= $5e^{5x}$5e5x
Example 2

Differentiate $y=\frac{e^{2x}-e^{-x}}{e^x}$y=e2xexex.

$y$y $=$= $\frac{e^{2x}-e^{-x}}{e^x}$e2xexex
  $=$= $\frac{e^{2x}}{e^x}-\frac{e^{-x}}{e^x}$e2xexexex
  $=$= $e^x-e^{-2x}$exe2x
$\therefore$$\frac{dy}{dx}$dydx $=$= $e^x+2e^{-2x}$ex+2e2x

 

Example 3

Differentiate $y=3e^{4x}$y=3e4x.

Think: The derivative of $y=3e^x$y=3ex is $3e^x$3ex. Since  $4x$4x is a function within $y=3e^x$y=3ex therefore we can use the chain rule to differentiate $y=3e^{4x}$y=3e4x.

Do:

$\frac{dy}{dx}$dydx $=$= $3e^{4x}\times4$3e4x×4
  $=$= $12e^{4x}$12e4x

 

 

Tangents and normals of exponential functions

The same rules we use for finding the equation of tangents and normals to a function also apply for exponential functions.

To find the equation of the tangent to the curve given by $y=e^{2x}$y=e2x at the point where $x=3$x=3, we first note that at $x=3$x=3:

$y$y $=$= $e^{2\left(3\right)}$e2(3)
$y$y $=$= $e^6$e6

The derivative of $y=e^{2x}$y=e2x is:

$\frac{dy}{dx}$dydx $=$= $2e^{2x}$2e2x

And so at $x=3$x=3:

$\frac{dy}{dx}$dydx $=$= $2e^6$2e6

Using the point-gradient form, the equation of the tangent becomes:

$y-y_1$yy1 $=$= $m\left(x-x_1\right)$m(xx1)
$y-e^6$ye6 $=$= $2e^6\left(x-3\right)$2e6(x3)
$y-e^6$ye6 $=$= $2e^6x-6e^6$2e6x6e6
$y$y $=$= $2e^6x-5e^6$2e6x5e6

 

Standard forms for differentiating exponential functions

$\frac{d}{dx}\left(e^x\right)=e^x$ddx(ex)=ex

$\frac{d}{dx}\left(e^{ax}\right)=ae^{ax}$ddx(eax)=aeax

Practice questions

Question 1

Consider the function $y=e^{ax}$y=eax, where $a$a is a constant.

  1. Let $u=ax$u=ax.

    Rewrite the function $y$y in terms of $u$u.

  2. Determine $\frac{du}{dx}$dudx.

  3. Hence determine $\frac{dy}{dx}$dydx.

  4. Consider the function $f\left(x\right)=e^{2x}$f(x)=e2x.

    State $f'\left(x\right)$f(x).

  5. Consider the function $f\left(x\right)=e^{2x}$f(x)=e2x.

    State $f'$f$\left(-3\right)$(3). Give your answer in exact form.

Question 2

Find the derivative of $y=e^{2x}+e^9+e^{-5x}$y=e2x+e9+e5x.

Question 3

Find the equation of the tangent to the curve $f\left(x\right)=2e^x$f(x)=2ex at the point where it crosses the $y$y-axis.

Express the equation in the form $y=mx+c$y=mx+c.

Question 4

Find the derivative of $y=\frac{e^x-e^{3x}+1}{e^x}$y=exe3x+1ex.

 

Differentiating exponentials with other bases

 

To differentiate an exponential with a base other than $e$e we must rewrite the exponential in terms of $e$e.

Worked example

example 4

Differentiate $y=2^x$y=2x.

Think: We need to rewrite the function in terms of $e$e. To balance the equation we also need to use the natural log function $\ln$ln.

Do

$y$y $=$= $e^{\ln2^x}$eln2x

We must introduce both e and the natural log to balance the equation.

$y'$y $=$= $e^{\ln2^x}\times\frac{d}{dx}\left(\ln2^x\right)$eln2x×ddx(ln2x)

Using the chain rule to differentiate.

  $=$= $e^{\ln2^x}\times\frac{d}{dx}\left(x\ln2\right)$eln2x×ddx(xln2)

Use log laws to move the power to the front of the log.

  $=$= $e^{\ln2^x}\times\ln2$eln2x×ln2

 

  $=$= $2^x\ln2$2xln2

Now we can simplify the first part.

Outcomes

MA11-6

manipulates and solves expressions using the logarithmic and index laws, and uses logarithms and exponential functions to solve practical problems

What is Mathspace

About Mathspace