Calculate the following trigonometric ratios to two decimal places:
\sin \dfrac{35 \pi}{16}
\cos 6.87
\sin 7.26
\tan 7.26
\tan \left(\dfrac{- 3 \pi}{7}\right)
\cos \dfrac{2 \pi}{3}
\sin \left( - \dfrac{4 \pi}{3}\right)
Consider the following diagram:
Find the length of side h.
Hence, state the exact value of:
Consider the following diagram:
Find the length of the hypotenuse, h.
Hence, state the exact value of:
Consider the diagram of the unit circle:
Find the exact value of:
\text{cosec } \dfrac{\pi}{4}
\cot \dfrac{\pi}{3}
Consider the unit circle diagram and state the exact value of the following trigonometric ratios:
\sin \dfrac{\pi}{2}
\cos \dfrac{3\pi}{2}
\tan \pi
\cos 0
\sec \dfrac{\pi}{2}
\sec \pi
\text{cosec } \dfrac{\pi}{2}
\sin \left(-2\pi\right)
Find the exact value of the following:
\sin \dfrac{\pi}{3} + \cos \dfrac{\pi}{3}
\sin \dfrac{\pi}{6} \cos \dfrac{\pi}{4}
\dfrac{\sin \dfrac{\pi}{3}}{\cos \dfrac{\pi}{6}}
\sin \dfrac{\pi}{4} \cos \dfrac{\pi}{6} + \tan \dfrac{\pi}{4}
\sin ^{2}\left(\dfrac{\pi}{6}\right) - \cos ^{2}\left(\dfrac{\pi}{3}\right)
2\sin ^{2}\left(\dfrac{\pi}{2}\right) + 3\cos ^{2}\left(\dfrac{\pi}{2}\right)
Consider the unit circle shown, where points A and B have the same \\ y-coordinates.
Suppose that \theta = \dfrac{10 \pi}{11}. State the size of the reference angle, \alpha.
Consider the unit circle shown, where the line through A and B passes through the origin, O.
Suppose that \theta = \dfrac{8 \pi}{7}. State the size of the reference angle, \alpha.
Consider the unit circle shown, where the points A and B have the same \\ x-coordinate.
Suppose that \theta = \dfrac{9 \pi}{5}. State the size of the reference angle, \alpha.
Find the exact value of the following:
\sin \dfrac{5 \pi}{6}
\tan \dfrac{3 \pi}{4}
\sin \dfrac{7 \pi}{6}
\cos \dfrac{7 \pi}{6}
\sin \dfrac{5 \pi}{3}
\cos \dfrac{5 \pi}{3}
\cos 4 \pi
\tan 9 \pi
\sin \dfrac{ 5\pi}{2}
\cos \dfrac{ 7\pi}{2}
\cos \dfrac{3 \pi}{4}
\tan \dfrac{7 \pi}{6}
\tan \dfrac{11 \pi}{6}
Find the exact value of the following:
\sin \left( - \dfrac{17 \pi}{6} \right)
\cos \left( - \dfrac{17 \pi}{6} \right)
\cos \left( - \dfrac{4 \pi}{3} \right)
\tan \left( - \dfrac{17 \pi}{6} \right)
\text{cosec } \left( - \dfrac{17 \pi}{6} \right)
\sec \left( - \dfrac{17 \pi}{6} \right)
\cot \left( - \dfrac{17 \pi}{6} \right)
\cot 3 \pi
Find the exact value of the following:
\dfrac{\left(\sin \dfrac{2 \pi}{3}\right) \left(\cos \dfrac{2 \pi}{3}\right) \left(\tan \dfrac{3 \pi}{4}\right)}{\tan \left( - \dfrac{\pi}{4} \right)}
\dfrac{\sin \dfrac{2 \pi}{3} + \cos \dfrac{5 \pi}{6} - \tan \dfrac{7 \pi}{4}}{\cos \dfrac{4 \pi}{3}}