topic badge

2.03 Domain and range

Worksheet
Domain and range
1

For each relation below:

i
State the domain.
ii
State the range.
iii
State whether it is a function.
a

\left\{\left(16, 14\right), \left(8, 28\right), \left( - 15 , 14\right), \left( - 20 , - 28 \right)\right\}

b
x77853
y19326
c
1
2
3
4
5
6
7
8
9
x
1
2
3
4
5
6
7
8
9
y
d
1
2
3
4
5
6
7
x
1
2
3
4
5
6
7
y
e
-8
-6
-4
-2
2
4
6
8
x
-8
-6
-4
-2
2
4
6
8
y
f
-8
-6
-4
-2
2
4
6
8
x
-8
-6
-4
-2
2
4
6
8
y
2

Consider the function graphed:

a

State the domain.

b

State the range.

-6
-4
-2
2
4
6
x
-6
-4
-2
2
4
6
y
3

Consider the graph of y = \sqrt[3]{ - x }:

a

State the domain.

b

State the range.

-4
-3
-2
-1
1
2
3
4
x
-4
-3
-2
-1
1
2
3
4
y
4

The function f \left(x\right) = \sqrt{x + 1} has been graphed below:

a

State the domain.

b

Is there a value of x in the domain that can produce a function value of - 2?

-4
-3
-2
-1
1
2
3
4
x
-4
-3
-2
-1
1
2
3
4
y
5

Consider the graph of the function y = f \left( x \right):

a

State the maximum value.

b

State the range.

c

State the domain.

-10
-8
-6
-4
-2
2
x
-8
-6
-4
-2
2
4
6
8
10
12
14
16
y
6

The function y = \sqrt{x} has a domain of x \geq 0 and a range of y \geq 0. State the domain and range of y = \sqrt{x} - 2.

7

State the natural domain of the the following functions:

a

f \left( x \right) = \dfrac{1}{\sqrt{x}}

b
f \left( x \right) = \dfrac{1}{\sqrt{x + 4}}
c
f \left( x \right) = \dfrac{1}{\sqrt{5 - x}}
Interval notation
8

State the domain of the following functions using interval notation:

a
f \left( x \right) = \dfrac{1}{x + 5}
b
f \left( x \right) = \dfrac{x + 8}{4 - x}
9

For each graph below, state the following using interval notation.

i

The domain

ii

The range

a
-7
-6
-5
-4
-3
-2
-1
1
x
-4
-3
-2
-1
1
2
3
4
y
b
-1
1
2
3
4
5
6
7
8
9
x
-5
-4
-3
-2
-1
1
2
3
4
5
y
c
-8
-7
-6
-5
-4
-3
-2
-1
1
2
x
-5
-4
-3
-2
-1
1
2
3
4
5
y
d
-2
2
4
6
8
10
x
-6
-4
-2
2
4
6
y
e
-2
2
4
6
8
10
x
-6
-4
-2
2
4
6
y
f
-8
-6
-4
-2
2
4
6
8
x
-8
-6
-4
-2
2
4
6
8
y
g
-6
-4
-2
2
4
6
x
-6
-4
-2
2
4
6
y
h
-8
-6
-4
-2
2
4
6
8
x
-8
-6
-4
-2
2
4
6
8
y
10

Use the graph of f to find:

a

The domain.

b

The range.

c

f \left( 0 \right)

d

f \left( 1 \right) - f \left( 7 \right)

-5
-4
-3
-2
-1
1
2
3
4
5
6
7
x
-4
-2
2
4
6
8
10
12
14
16
y
Combinations of functions
11

The graphs of f \left( x \right) = \sqrt{5 - x} and g \left( x \right) = \sqrt{x + 3} are shown below:

Find the domain of the following functions using interval notation:

a

f

b

g

c

f + g

d

f - g

e

f \times g

f

\dfrac{f}{g}

g

\dfrac{g}{f}

-5
-4
-3
-2
-1
1
2
3
4
5
6
7
8
9
x
-2
-1
1
2
3
4
5
y
12

Let f \left( x \right) = \dfrac{1}{x - 3} and g \left( x \right) = \dfrac{1}{x+2}. Find the domain of the following functions using interval notation:

a
(f-g)(x)
b
(f \times g)(x)
c
(f/g)(x)
d
(g/f)(x)
13

Let f \left( x \right) = \dfrac{2}{x - 8} and g \left( x \right) = 2 - x. Find the domain of the following functions using interval notation:

a

(f+g)(x)

b

(f \times g)(x)

c

(f/g)(x)

d

(g/f)(x)

14

Let f \left( x \right) = \dfrac{9}{x - 7} and g \left( x \right) = \sqrt{x - 2}.

a

State the domain of f \left( x \right).

b

State the domain of g \left( x \right).

c

State the domain of (ff)(x).

d

State the domain of (f/g)(x).

e

State the domain of (f-g)(x).

f

Find (ff)(x).

g

Find (f/g)(x).

h

Find (f-g)(x).

15

Consider the functions f \left( x \right) = \dfrac{4 x - 3}{x + 2} and g \left( x \right) = \dfrac{x^{2} + 6 x + 8}{x^{2} + 7 x + 10}.

a

Find \left(f+g\right) \left(x\right).

b

Find the domain of \left(f + g\right) \left(x\right).

c

Find \left(f\times g\right) \left(x\right).

d

Find the domain of \left(f \times g\right) \left(x\right).

e

Find \left(f/g\right) \left(x\right).

f

Find the domain of \left(f / g\right) \left(x\right).

16

Given that the domain of a function is \left(-\infty, - 6 \right) \cup \left( - 6 , 3\right) \cup \left(3, \infty\right), determine if the following could be the equation of the function:

a

f \left( x \right) = \dfrac{x}{\left(x + 5\right) \left(x + 6\right) \left(x - 3\right)}

b

f \left( x \right) = \dfrac{x + 6}{x - 3}

c

f \left( x \right) = \dfrac{1}{\left(x - 6\right) \left(x - 3\right)}

d

f \left( x \right) = \dfrac{x + 6}{\left(x + 6\right) \left(x - 3\right)}

Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

MA11-1

uses algebraic and graphical techniques to solve, and where appropriate, compare alternative solutions to problems

What is Mathspace

About Mathspace