Evaluate (to one decimal place if necessary):
$\sqrt{7}$√7$=$=$\editable{}$
$\sqrt{20}$√20$=$=$\editable{}$
$\sqrt{27}$√27$=$=$\editable{}$
Does $\sqrt{7}+\sqrt{20}=\sqrt{27}$√7+√20=√27?
Yes
No
In general does $\sqrt{k}+\sqrt{m}=\sqrt{k+m}$√k+√m=√k+m?
Yes
No
Simplify: $8\sqrt{3}+18\sqrt{3}$8√3+18√3
Simplify: $-12\sqrt{5}+6\sqrt{5}-12\sqrt{5}$−12√5+6√5−12√5
Simplify: $8\sqrt{6}+17\sqrt{13}+19\sqrt{6}-6\sqrt{13}$8√6+17√13+19√6−6√13