topic badge
Australia
Year 7

3.06 Rounding decimals

Worksheet
Round to a place value
1

Is 11.34 closer to 11 or 12?

2

Is 38.892 closer to 38 or 39?

3

State whether the following lie on the interval between 7 and 8.

a
8.201
b
7.99
c
8.85
d
7.39
4

Consider the number 6.186.

a

Which of the following pair of consecutive whole numbers does 6.186 lies in between?

A
4 and 5
B
5 and 6
C
6 and 7
D
7 and 8
b

Based on your answer in part (a), which number is 6.186 closer to?

5

Consider the number 24.72.

a

Which of the following pair of consecutive whole numbers does 24.72 lies in between?

A
23 and 24
B
24 and 25
C
25 and 26
D
27 and 28
b

Based on your answer in part (a), which number is 24.72 closer to?

6

Round the following to the nearest whole number:

a
2.19
b
5.97
c
24.09
d
33.931
e
0.5
f
0.05
g
0.799
h
89.5
7

Round the following to the nearest tenth:

a
0.14
b
7.35
c
3.56
d
8.99
e
27.88
f
289.427
g
0.7003
h
9.992
8

Round the following to the nearest hundredth:

a
2.897
b
328.864
c
14.285
d
67.001
e
0.007
f
12.999
g
99.999
h
131.099
Round to a number of decimal places
9

Round the following to one decimal place:

a
0.41
b
8.35
c
79.38
d
0.3009
e
3.55
f
19.95
g
13.88
h
1.0099
10

Round the following to two decimal places:

a
2.697
b
393.586
c
0.435
d
7.3582
e
79.997
f
2.0029
g
149.955
h
0.099
11

Round the following to three decimal places:

a
11.8483
b
2.159\,76
c
4.504\,13
d
1.599\,64
e
90.0335
f
0.5987
g
41.5005
h
9.9996
12

Round the following to four decimal places:

a
5.659\,64
b
5.600\,96
c
12.006\,65
d
39.999\,95
Recurring decimals
13

The fraction \dfrac{1}{9} can also be written as 1 \div 9.

The quotient is 0.111 \ldots which we read as "zero point one recurring".

0.111 \ldots can be written as 0.\overline{1}.

Complete the table for the following recurring decimals:

FractionRecurring decimalRounded to two decimal places
\dfrac{1}{9}0.\overline{1}0.11
\dfrac{2}{9}0.\overline{2}
\dfrac{3}{9}
\dfrac{4}{9}0.\overline{4}
\dfrac{5}{9}0.\overline{5}
\dfrac{6}{9}0.\overline{6}
\dfrac{7}{9}0.\overline{7}
\dfrac{8}{9}0.89
\dfrac{9}{9}11.00
14

The fraction \dfrac{1}{7} can also be written as 1 \div 7.

The quotient is 0.142\,857\,142\,857 \ldots when written as a decimal, which can be written as 0.\overline{142\,857}.

Complete the table for the following recurring decimals:

FractionRecurring decimalRounded to four decimal places
\dfrac{1}{7}0.\overline{142\,857}0.1429
\dfrac{2}{7}0.\overline{285\,714}
\dfrac{3}{7}
\dfrac{4}{7}0.\overline{571\,428}
\dfrac{5}{7}0.\overline{714\,285}
\dfrac{6}{7}0.\overline{857\,142}
\dfrac{7}{7}11.0000
15

Round the following recurring decimals to one decimal place:

a
0.\overline{24}
b
0.\overline{631}
c
0.\overline{4}
d
2.\overline{6}
e
0.\overline{19}
f
0.\overline{808}
g
2.\overline{5}
h
4.2\overline{6}
16

Round the following recurring decimals to two decimal places:

a
0.\overline{138}
b
0.\overline{89}
c
0.\overline{7}
d
9.\overline{9}
e
0.\overline{72}
f
0.\overline{586}
g
0.\overline{4}
h
3.\overline{5}
Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

ACMNA156

Round decimals to a specified number of decimal places

What is Mathspace

About Mathspace