topic badge

5.09 Angle sum identities

Lesson

Angle sum identities

The Angle Sum and Difference identities allow us to expand expressions like $\sin\left(A+B\right)$sin(A+B). One way to establish these identities involves using the cosine rule and the distance formula together with an arbitrary triangle with vertices at the centre and circumference of the unit circle.

We can write two different expressions for the length of the green line $PQ$PQ. First, we use the cosine rule.

The arms of the triangle have unit length because they are radii of the unit circle. Therefore, we have:

$c^2$c2 $=$= $a^2+b^2-2ab\cos C$a2+b22abcosC
$PQ^2$PQ2 $=$= $1^2+1^2-2\times1\times1\times\cos\left(A-B\right)$12+122×1×1×cos(AB)
  $=$= $2-2\cos\left(A-B\right)$22cos(AB) .......... [1]

Next, we write the distance $PQ$PQ using the coordinates of the points and the distance formula. We have: 

$d^2$d2 $=$= $\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2$(x2x1)2+(y2y1)2
$PQ^2$PQ2 $=$= $\left(\cos A-\cos B\right)^2+\left(\sin A-\sin B\right)^2$(cosAcosB)2+(sinAsinB)2
  $=$= $\cos^2A-2\cos A\cos B+\cos^2B+\sin^2A-2\sin A\sin B+\sin^2B$cos2A2cosAcosB+cos2B+sin2A2sinAsinB+sin2B
  $=$= $\cos^2A+\sin^2A+\cos^2B+\sin^2B-2\cos A\cos B-2\sin A\sin B$cos2A+sin2A+cos2B+sin2B2cosAcosB2sinAsinB
  $=$= $2-2\left(\cos A\cos B+\sin A\sin B\right)$22(cosAcosB+sinAsinB) .......... [2]

Equating the two expressions, [1] and [2], gives:

$2-2\cos\left(A-B\right)$22cos(AB) $=$= $2-2\left(\cos A\cos B+\sin A\sin B\right)$22(cosAcosB+sinAsinB)
Hence, $\cos\left(A-B\right)$cos(AB) $=$= $\cos A\cos B+\sin A\sin B$cosAcosB+sinAsinB

 

From this identity we can generate several others by using substitution and properties we have already established. 

To establish a rule for $\cos\left(A+B\right)$cos(A+B) we can make the substitution of $-B$B for angle $B$B:

$\cos\left(A-\left(-B\right)\right)$cos(A(B)) $=$= $\cos A\cos\left(-B\right)+\sin A\sin\left(-B\right)$cosAcos(B)+sinAsin(B)

Using the fact that $\cos\left(-\theta\right)=\cos\theta$cos(θ)=cosθ and $\sin\left(-\theta\right)=-\sin\theta$sin(θ)=sinθ, we have:

 $\cos\left(A+B\right)$cos(A+B) $=$= $\cos A\cos B-\sin A\sin B$cosAcosBsinAsinB

We obtain the corresponding formulas for sine by using the complementary angle relationship: $\sin\theta=\cos\left(\frac{\pi}{2}-\theta\right)$sinθ=cos(π2θ).

If we write $\sin\left(A-B\right)$sin(AB) as $\cos\left(\frac{\pi}{2}-\left(A-B\right)\right)$cos(π2(AB)), it follows that: 

$\sin\left(A-B\right)$sin(AB) $=$= $\cos\left(\left(\frac{\pi}{2}-A\right)+B\right)$cos((π2A)+B)
  $=$= $\cos\left(\frac{\pi}{2}-A\right)\cos B-\sin\left(\frac{\pi}{2}-A\right)\sin B$cos(π2A)cosBsin(π2A)sinB
  $=$= $\sin A\cos B-\cos A\sin B$sinAcosBcosAsinB

We can obtain the rule for $\sin\left(A+B\right)$sin(A+B) by again making the substitution $-B$B for the angle $B$B. Hence:

$\sin\left(A+B\right)\equiv\sin A\cos B+\cos A\sin B$sin(A+B)sinAcosB+cosAsinB

The corresponding formulas for the tangent function are obtained by expanding $\tan\left(A+B\right)=\frac{\sin\left(A+B\right)}{\cos\left(A+B\right)}$tan(A+B)=sin(A+B)cos(A+B)

After some simplification, we have

$\tan\left(A+B\right)=\frac{\tan A+\tan B}{1-\tan A\tan B}$tan(A+B)=tanA+tanB1tanAtanB

and

$\tan\left(A-B\right)=\frac{\tan A-\tan B}{1+\tan A\tan B}$tan(AB)=tanAtanB1+tanAtanB

Summarising all these rules together, we have:

Angle sum and difference formulae
$\cos\left(A+B\right)$cos(A+B) $=$= $\cos A\cos B-\sin A\sin B$cosAcosBsinAsinB
$\cos\left(A-B\right)$cos(AB) $=$= $\cos A\cos B+\sin A\sin B$cosAcosB+sinAsinB
$\sin\left(A+B\right)$sin(A+B) $=$= $\sin A\cos B+\cos A\sin B$sinAcosB+cosAsinB
$\sin\left(A-B\right)$sin(AB) $=$= $\sin A\cos B-\cos A\sin B$sinAcosBcosAsinB
$\tan\left(A+B\right)$tan(A+B) $=$= $\frac{\tan A+\tan B}{1-\tan A\tan B}$tanA+tanB1tanAtanB
$\tan\left(A-B\right)$tan(AB) $=$= $\frac{\tan A-\tan B}{1+\tan A\tan B}$tanAtanB1+tanAtanB

If $B=A$B=A in the above identities, then we obtain the following useful double angle formulae:

Double angle formulae
$\sin2A$sin2A $=$= $2\sin A\cos A$2sinAcosA
$\cos2A$cos2A $=$= $\cos^2\left(A\right)-\sin^2\left(A\right)$cos2(A)sin2(A)
$\tan2A$tan2A $=$= $\frac{2\tan A}{1-\tan^2\left(A\right)}$2tanA1tan2(A)

Worked example

Example 1

Find an 'exact value' expression for $\sin\frac{\pi}{12}$sinπ12.

Think: From lesson 5.04 we found that integer multiples of $\frac{\pi}{4}$π4 and $\frac{\pi}{6}$π6 have exact values when evaluated using a trigonometric function. $\frac{\pi}{12}$π12 is not an integer multiple of either of these but can we write this as a sum or difference of angles with familiar values? 

Do: It may be easier to think in multiples of $\frac{1}{12}$112. We notice that $\frac{1}{12}=\frac{3}{12}-\frac{2}{12}$112=312212 and hence,$\frac{\pi}{12}=\frac{\pi}{4}-\frac{\pi}{6}$π12=π4π6. Using our rule for $\sin\left(A-B\right)$sin(AB):

$\sin\left(A-B\right)$sin(AB) $=$= $\sin A\cos B-\cos A\sin B$sinAcosBcosAsinB
$$ $=$= $\sin\frac{\pi}{4}\cos\frac{\pi}{6}-\cos\frac{\pi}{4}\sin\frac{\pi}{6}$sinπ4cosπ6cosπ4sinπ6
  $=$= $\frac{\sqrt{2}}{2}.\frac{\sqrt{3}}{2}-\frac{\sqrt{2}}{2}.\frac{1}{2}$22.3222.12
  $=$= $\frac{\sqrt{6}-\sqrt{2}}{4}$624

Practice questions

Question 1

Using the expansion of $\cos\left(A+B\right)$cos(A+B), find the exact value of $\cos\left(\frac{7\pi}{12}\right)$cos(7π12). Express the value in rationalised form.

Question 2

Express $\cos\left(3\theta+x\right)\cos3\theta-\sin\left(3\theta+x\right)\sin3\theta$cos(3θ+x)cos3θsin(3θ+x)sin3θ in simplest form.

Question 3

By simplifying the left hand side of the identity , prove that $\tan\left(\theta+\alpha\right)\tan\left(\theta-\alpha\right)=\frac{\tan^2\left(\theta\right)-\tan^2\left(\alpha\right)}{1-\tan^2\left(\theta\right)\tan^2\left(\alpha\right)}$tan(θ+α)tan(θα)=tan2(θ)tan2(α)1tan2(θ)tan2(α).

Question 4

If $\tan A+\tan B=-5$tanA+tanB=5 and $\tan A\tan B=6$tanAtanB=6, prove that $\sin\left(A+B\right)=\cos\left(A+B\right)$sin(A+B)=cos(A+B).

Outcomes

ACMMM041

prove and apply the angle sum and difference identities

What is Mathspace

About Mathspace