topic badge
India
Class XI

Sums and differences as products (rad)

Lesson

Products

If the sine and cosine sum and difference formulas are written down side-by-side it becomes apparent that useful results can be obtained by adding some of them them in pairs.

$\sin\left(A+B\right)$sin(A+B) $=$= $\sin\left(A\right)\cos\left(B\right)+\sin\left(B\right)\cos\left(A\right)$sin(A)cos(B)+sin(B)cos(A) (1)
$\sin\left(A-B\right)$sin(AB) $=$= $\sin\left(A\right)\cos\left(B\right)-\sin\left(B\right)\cos\left(A\right)$sin(A)cos(B)sin(B)cos(A) (2)
$\cos\left(A+B\right)$cos(A+B) $=$= $\cos\left(A\right)\cos\left(B\right)-\sin\left(A\right)\sin\left(B\right)$cos(A)cos(B)sin(A)sin(B) (3)
$\cos\left(A-B\right)$cos(AB) $=$= $\cos\left(A\right)\cos\left(B\right)+\sin\left(A\right)\sin\left(B\right)$cos(A)cos(B)+sin(A)sin(B) (4)

If we add (1) and (2), we have

$\sin\left(A+B\right)+\sin\left(A-B\right)$sin(A+B)+sin(AB) $=$= $2\sin\left(A\right)\cos\left(B\right)$2sin(A)cos(B) (5)

Similarly, from (3) and (4) we obtain, by addition,

$\cos\left(A+B\right)+\cos\left(A-B\right)$cos(A+B)+cos(AB) $=$= $2\cos\left(A\right)\cos\left(B\right)$2cos(A)cos(B) (6)

and by subtraction,

$\cos\left(A-B\right)-\cos\left(A+B\right)$cos(AB)cos(A+B) $=$= $2\sin\left(A\right)\sin\left(B\right)$2sin(A)sin(B) (7)

Equations (5), (6) and (7) give the following three product formulas:

$\sin\left(A\right)\cos\left(B\right)$sin(A)cos(B) $=$= $\frac{1}{2}\left(\sin\left(A+B\right)+\sin\left(A-B\right)\right)$12(sin(A+B)+sin(AB)) (5a)
$\cos\left(A\right)\cos\left(B\right)$cos(A)cos(B) $=$= $\frac{1}{2}\left(\cos\left(A+B\right)+\cos\left(A-B\right)\right)$12(cos(A+B)+cos(AB)) (6a)
$\sin\left(A\right)\sin\left(B\right)$sin(A)sin(B) $=$= $\frac{1}{2}\left(\cos\left(A-B\right)-\cos\left(A+B\right)\right)$12(cos(AB)cos(A+B)) (7a)

 

Sums

By re-writing (5a), (6a) and (7a) we can obtain formulas for the sums and differences of sines and cosines. To do this, we let $U=A+B$U=A+B and $V=A-B$V=AB. Then, by solving these equations for $A$A and $B$B we get $A=\frac{U+V}{2}$A=U+V2 and $B=\frac{U-V}{2}$B=UV2.

Thus, by substituting for $A$A and $B$B in the product formulas and rearranging slightly, we obtain:

$\sin\left(U\right)+\sin\left(V\right)$sin(U)+sin(V) $=$= $2\sin\left(\frac{U+V}{2}\right)\cos\left(\frac{U-V}{2}\right)$2sin(U+V2)cos(UV2) (8)
$\cos\left(U\right)+\cos\left(V\right)$cos(U)+cos(V) $=$= $2\cos\left(\frac{U+V}{2}\right)\cos\left(\frac{U-V}{2}\right)$2cos(U+V2)cos(UV2) (9)
$\cos\left(V\right)-\cos\left(U\right)$cos(V)cos(U) $=$= $2\sin\left(\frac{U+V}{2}\right)\sin\left(\frac{U-V}{2}\right)$2sin(U+V2)sin(UV2) (10)

and from (8), using the fact that $-\sin\left(V\right)=\sin\left(-V\right)$sin(V)=sin(V), we can write

$\sin\left(U\right)-\sin\left(V\right)$sin(U)sin(V) $=$= $2\sin\left(\frac{U-V}{2}\right)\cos\left(\frac{U+V}{2}\right)$2sin(UV2)cos(U+V2) (11)

 

Another type of sum, with a very useful simplification, occurs between different multiples of the sine and cosine of identical angles.

The expression $a\sin\left(\theta\right)+b\cos\left(\theta\right)$asin(θ)+bcos(θ) can be written in the form $r\sin\left(\theta+\alpha\right)$rsin(θ+α). The latter expands to $r\left(\sin\left(\theta\right)\cos\left(\alpha\right)+\cos\left(\theta\right)\sin\left(\alpha\right)\right)$r(sin(θ)cos(α)+cos(θ)sin(α)).

On comparing this with the original expression, we see that $a=r\cos\left(\alpha\right)$a=rcos(α) and $b=r\sin\left(\alpha\right)$b=rsin(α).

Hence, $r=\sqrt{a^2+b^2}$r=a2+b2 and $\tan\left(\alpha\right)=\frac{b}{a}$tan(α)=ba. Then, using the notation $\tan^{-1}$tan1 for the inverse tangent function, we can write

$a\sin\left(\theta\right)+b\cos\left(\theta\right)$asin(θ)+bcos(θ) $=$= $\sqrt{a^2+b^2}\sin\left(\theta+\tan^{-1}\left(\frac{b}{a}\right)\right)$a2+b2sin(θ+tan1(ba)) (12)

 

Worked example

Express $\cos\left(\frac{17\pi}{12}\right)-\cos\left(\frac{\pi}{4}\right)$cos(17π12)cos(π4) more simply.

Do: Using (10), $\cos\left(V\right)-\cos\left(U\right)=2\sin\left(\frac{U+V}{2}\right)\sin\left(\frac{U-V}{2}\right)$cos(V)cos(U)=2sin(U+V2)sin(UV2), we have

$\cos\left(\frac{17\pi}{12}\right)-\cos\left(\frac{\pi}{4}\right)=2\sin\left(\frac{\frac{17\pi}{12}+\frac{\pi}{4}}{2}\right)\sin\left(\frac{\frac{\pi}{4}-\frac{17\pi}{12}}{2}\right)$cos(17π12)cos(π4)=2sin(17π12+π42)sin(π417π122)

That is,

$\cos\left(\frac{17\pi}{12}\right)-\cos\left(\frac{\pi}{4}\right)$cos(17π12)cos(π4) $=$= $2\sin\left(\frac{5\pi}{6}\right)\sin\left(-\frac{7\pi}{12}\right)$2sin(5π6)sin(7π12)
  $=$= $-2\sin\left(\frac{\pi}{6}\right)\sin\left(\frac{5\pi}{12}\right)$2sin(π6)sin(5π12)
  $=$= $-\sin\left(\frac{5\pi}{12}\right)$sin(5π12)

Using a half-angle formula, $\sin\left(\frac{\theta}{2}\right)=\sqrt{\frac{1}{2}\left(1-\cos\left(\theta\right)\right)}$sin(θ2)=12(1cos(θ)) we can further simplify this to the exact value $-\frac{1}{2}\sqrt{2+\sqrt{3}}$122+3.

 

Practice questions

QUESTION 1

Express $\cos\left(3x+2y\right)\cos\left(x-y\right)$cos(3x+2y)cos(xy) as a sum or difference of two trigonometric functions.

QUESTION 2

Express $\sin\left(6x\right)+\sin\left(4x\right)$sin(6x)+sin(4x) as a product of two trigonometric functions.

QUESTION 3

By expressing the left-hand side of the equation as a product, solve the equation $\sin5x+\sin x=0$sin5x+sinx=0 for $0\le x$0x$<=$<=$2\pi$2π.

Outcomes

11.SF.TF.1

Positive and negative angles. Measuring angles in radians and in degrees and conversion from one measure to another. Definition of trigonometric functions with the help of unit circle. Truth of the identity sin^2 x + cos^2 x = 1, for all x. Signs of trigonometric functions and sketch of their graphs. Expressing sin (x + y) and cos (x + y) in terms of sin x, sin y, cos x and cos y. Deducing the identities like following: cot(x + or - y), sin x + sin y, cos x + cos y, sin x - sin y, cos x - cos y (see syllabus document)

What is Mathspace

About Mathspace