Which of the following points satisfy the circle inequality $\left(x+4\right)^2+\left(y-2\right)^2<160$(x+4)2+(y−2)2<160?
Select all that apply.
$\left(-17,15\right)$(−17,15)
$\left(8,6\right)$(8,6)
$\left(0,0\right)$(0,0)
$\left(-3,1\right)$(−3,1)
Consider the circle with equation $x^2+y^2=169$x2+y2=169.
Does the centre of the circle $\left(x-1\right)^2+\left(y+3\right)^2=52$(x−1)2+(y+3)2=52 satisfy the inequality $\left(x-1\right)^2+\left(y+3\right)^2$(x−1)2+(y+3)2$\ge$≥$52$52?
Determine whether the following points lie inside, outside, or on the circle $x^2+y^2=117$x2+y2=117.