What is the domain of the function defined by $f\left(x\right)=\frac{1}{x+5}$f(x)=1x+5?
$\left(-\infty,1\right)$(−∞,1)$\cup$∪$\left(1,\infty\right)$(1,∞)
$\left(-\infty,0\right)$(−∞,0)$\cup$∪$\left(0,\infty\right)$(0,∞)
$\left(-\infty,-5\right)$(−∞,−5)$\cup$∪$\left(-5,\infty\right)$(−5,∞)
$\left(-\infty,5\right)$(−∞,5)$\cup$∪$\left(5,\infty\right)$(5,∞)
Consider the function $y=\frac{2}{x+1}$y=2x+1.
Consider the function $y=\frac{3}{x}+2$y=3x+2.
Consider the function $y=-\frac{3}{x}+4$y=−3x+4.