Given that $ax^2-15x+25=\left(2x-5\right)\left(x-5\right)$ax2−15x+25=(2x−5)(x−5) for all values of $x$x, solve for $a$a.
Given that $3x^2+4x-2$3x2+4x−2$\equiv$≡$a\left(x-3\right)^2+b\left(x-3\right)+c$a(x−3)2+b(x−3)+c for all real $x$x, answer the following.
Given that $x^2+6x+14=a\left(x+b\right)^2+c$x2+6x+14=a(x+b)2+c for all real values of $x$x, answer the following.
Consider the identity $a\left(x-4\right)+b\left(7-x\right)=3x-4$a(x−4)+b(7−x)=3x−4.