Consider the following system of equations:
$x^2$x2 | $=$= | $y+14$y+14 |
$y$y | $=$= | $3x-16$3x−16 |
By considering the left hand side ($LHS$LHS) and right hand side ($RHS$RHS) of each equation, fill in the missing values to verify that the points of intersection on the graphs are solutions of the corresponding system of equations.
First, test the point $\left(1,-13\right)$(1,−13).
$x^2=y+14$x2=y+14 |
||||||
---|---|---|---|---|---|---|
$LHS$LHS | $=$= | $\left(\editable{}\right)^2$()2 | $RHS$RHS | $=$= | $\editable{}+14$+14 | |
$=$= | $\editable{}$ | $=$= | $\editable{}$ | |||
$y=3x-16$y=3x−16 |
||||||
$LHS$LHS | $=$= | $\editable{}$ | $RHS$RHS | $=$= | $3\times\editable{}-16$3×−16 | |
$=$= | $\editable{}$ |
Now test the point $\left(2,-10\right)$(2,−10).
$x^2=y+14$x2=y+14 |
||||||
---|---|---|---|---|---|---|
$LHS$LHS | $=$= | $\left(\editable{}\right)^2$()2 | $RHS$RHS | $=$= | $\editable{}+14$+14 | |
$=$= | $\editable{}$ | $=$= | $\editable{}$ | |||
$y=3x-16$y=3x−16 |
||||||
$LHS$LHS | $=$= | $\editable{}$ | $RHS$RHS | $=$= | $3\times\editable{}-16$3×−16 | |
$=$= | $\editable{}$ |
When solving $y=x^2-3x+1$y=x2−3x+1 and $y=x+6$y=x+6 simultaneously, one point of intersection is at $x=-1$x=−1. What is the $y$y-coordinate at this point?
Where does the vertical line $x=-5$x=−5 intersect the curve $y=-2x^2+x-12$y=−2x2+x−12?
Solve the following equations.
Equation 1 | $y=x^2$y=x2 |
Equation 2 | $y=9$y=9 |