topic badge
India
Class IX

Factorising from roots (includes complex roots)

Lesson

Suppose the polynomial $P\left(x\right)$P(x) is a polynomial with real coefficients. If the corresponding polynomial equation $P\left(x\right)=0$P(x)=0 of degree $n$n has $n$n real roots, then $P\left(x\right)$P(x) can be factorised over the reals into $n$n linear factors.

If $P\left(x\right)=0$P(x)=0 has less than $n$n real roots, then there must also exist conjugate pairs of complex roots of the form $a\pm bi$a±bi.  This is a consequence of the conjugate root theorem which tells us that if $z_1=a+bi$z1=a+bi is a root of a  polynomial equation  $P\left(x\right)=0$P(x)=0 with real coefficients, then so also is $z_2=a-bi$z2=abi.

For example the degree $4$4 polynomial equation given by $x^4-2x^3+2x^2+38x-39=0$x42x3+2x2+38x39=0 has two real roots $x=1$x=1 and $x=-3$x=3 , and two complex conjugate roots $2\pm3i$2±3i

This means therefore that the polynomial $P\left(x\right)=x^4-2x^3+2x^2+38x-39$P(x)=x42x3+2x2+38x39  can be factorised as $P\left(x\right)=\left(x-1\right)\left(x+3\right)\left(x-2-3i\right)\left(x-2+3i\right)$P(x)=(x1)(x+3)(x23i)(x2+3i)

Example 1

Suppose we needed to factorise the polynomial $P\left(x\right)=x^4+x^3-7x^2-x+6$P(x)=x4+x37x2x+6 given that we know that $\left(x+3\right)$(x+3) is a factor.

Then we can use synthetic division as follows:

$P\left(x\right)$P(x) $1$1 $1$1 $-7$7 $-1$1 $6$6
$-3$3   $-3$3 $6$6 $3$3 $-6$6
$Q\left(x\right)$Q(x) $1$1 $-2$2 $-1$1 $2$2 $0$0

Hence $P\left(x\right)=\left(x+3\right)\left(x^3-2x^2-x+2\right)$P(x)=(x+3)(x32x2x+2)

We may notice that the quotient polynomial $Q\left(x\right)=x^3-2x^2-x+2$Q(x)=x32x2x+2  can be factorised in two stages. Firstly, $Q\left(x\right)=x^2\left(x-2\right)-\left(x-2\right)$Q(x)=x2(x2)(x2) and so taking out the common factor we see that $Q\left(x\right)=\left(x-2\right)\left(x^2-1\right)=\left(x-2\right)\left(x-1\right)\left(x+1\right)$Q(x)=(x2)(x21)=(x2)(x1)(x+1).

This means that $P\left(x\right)=\left(x+3\right)\left(x-2\right)\left(x-1\right)\left(x+1\right)$P(x)=(x+3)(x2)(x1)(x+1)

The zeros of $P\left(x\right)=0$P(x)=0 are then given as $-3,2,-1,1$3,2,1,1

Example 2

Suppose we know that the polynomial $P\left(x\right)=x^3-3x^2+49x-147$P(x)=x33x2+49x147 has the factor $\left(x-7i\right)$(x7i).

Then by the conjugate root theorem, $P\left(x\right)$P(x) must also contain the factor $\left(x+7i\right)$(x+7i). This means that $P\left(x\right)=\left(x-a\right)\left(x-7i\right)\left(x+7i\right)=\left(x-a\right)\left(x^2+49\right)$P(x)=(xa)(x7i)(x+7i)=(xa)(x2+49), for some real number a.

If we were to multiply out these factors, the constant term $-49a$49a would have to equal $-147$147. Thus $a=3$a=3 and so $P\left(x\right)=\left(x-3\right)\left(x-7i\right)\left(x+7i\right)$P(x)=(x3)(x7i)(x+7i).

The zeros of $P\left(x\right)=0$P(x)=0 are then given as $3,7+i,7-i$3,7+i,7i

Example 3

The polynomial $P\left(x\right)=x^4-2x^3+6x^2-8x+8$P(x)=x42x3+6x28x+8 has the factor $\left(x-2i\right)$(x2i).

Again from the conjugate root theorem it must also have the factor $\left(x+2i\right)$(x+2i), and so we can express the polynomial as $P\left(x\right)=\left(x^2+4\right)Q\left(x\right)$P(x)=(x2+4)Q(x) where $Q\left(x\right)$Q(x) is a polynomial of degree $2$2

By division we can show that $Q\left(x\right)=x^2-2x+2$Q(x)=x22x+2

Noting that $\left(x-1\right)^2=x^2-2x+1$(x1)2=x22x+1, we see that $Q\left(x\right)=\left(x-1\right)^2+1$Q(x)=(x1)2+1 and this can only be factorised over the complex field.

Thus $Q\left(x\right)=\left(x-1\right)^2+1=\left(x-1\right)^2-i^2=\left(x-1-i\right)\left(x-1+i\right)$Q(x)=(x1)2+1=(x1)2i2=(x1i)(x1+i).

Hence $P\left(x\right)=\left(x+2i\right)\left(x-2i\right)\left(x-1-i\right)\left(x-1+i\right)$P(x)=(x+2i)(x2i)(x1i)(x1+i).

The zeros of $P\left(x\right)=0$P(x)=0 are then given as $2i,-2i,1+i,1-i$2i,2i,1+i,1i

More Worked Examples

QUESTION 1

Factor $P\left(x\right)=x^3+2x^2-3x-6$P(x)=x3+2x23x6 into linear factors given that $-2$2 is a zero of $P\left(x\right)$P(x).

QUESTION 2

Factor $P\left(x\right)=x^4-3x^3+6x^2-48x-160$P(x)=x43x3+6x248x160 into linear factors given that $4i$4i is a zero of $P\left(x\right)$P(x).

QUESTION 3

Factor $P\left(x\right)=x^4-6x^3+14x^2-6x+13$P(x)=x46x3+14x26x+13 into linear factors given that $3-2i$32i is a zero of $P\left(x\right)$P(x).

Outcomes

9.A.P.1

Definition of a polynomial in one variable, its coefficients, with examples and counterexamples, its terms, zero polynomial. Degree of a polynomial. Constant, linear, quadratic, cubic polynomials; monomials, binomials, trinomials. Factors and multiples. Zeros/roots of a polynomial/equation.

What is Mathspace

About Mathspace