Given that $\left(ax+5\right)+\left(4x^2-4x+4\right)+\left(3x+2\right)=4x^2+4x+11$(ax+5)+(4x2−4x+4)+(3x+2)=4x2+4x+11
for all values of $x$x, solve for $a$a.
Given that $ax^2-15x+25=\left(2x-5\right)\left(x-5\right)$ax2−15x+25=(2x−5)(x−5) for all values of $x$x, solve for $a$a.
$A\left(x+5\right)+B\left(x+2\right)=6x+18$A(x+5)+B(x+2)=6x+18 for all real values of $x$x.
Given that $3x^2+4x-2$3x2+4x−2$\equiv$≡$a\left(x-3\right)^2+b\left(x-3\right)+c$a(x−3)2+b(x−3)+c for all real $x$x, answer the following.