topic badge
India
Class VIII

Expand perfect squares

Interactive practice questions

Complete the proof that $\left(a+b\right)^2=a^2+2ab+b^2$(a+b)2=a2+2ab+b2.

$\left(a+b\right)^2$(a+b)2 $=$= $\left(\editable{}\right)\left(\editable{}\right)$()()
$=$= $a\left(\editable{}\right)+b\left(\editable{}\right)$a()+b()
$=$= $\editable{}+\editable{}+\editable{}+\editable{}$+++
$=$= $\editable{}+\editable{}+\editable{}$++
Easy
2min

Complete the proof that $\left(a-b\right)^2=a^2-2ab+b^2$(ab)2=a22ab+b2.

Easy
1min

$\left(8+6\right)^2=8^2+6^2$(8+6)2=82+62

Easy
1min

Consider the following expressions.

Easy
2min
Sign up to access Practice Questions
Get full access to our content with a Mathspace account

Outcomes

8.A.AE.3

Identities (a ± b)^2 = a^2 ± 2ab + b^2, a^2 – b^2 = (a – b) (a + b) Factorisation (simple cases only) as examples the following types a(x + y), (x ± y)^2, a^2 – b^2, (x + a).(x + b)

What is Mathspace

About Mathspace