topic badge
India
Class VII

Power of a power with variable bases

Interactive practice questions

We want to simplify:

$\left(r^2\right)^4$(r2)4

a

Select the three expressions which are equivalent to $\left(r^2\right)^4$(r2)4:

$r^2\times r^4$r2×r4

A

$\left(r\times r\right)\times\left(r\times r\times r\times r\right)$(r×r)×(r×r×r×r)

B

$\left(r\times r\right)^4$(r×r)4

C

$\left(r\times r\right)\times\left(r\times r\right)\times\left(r\times r\right)\times\left(r\times r\right)$(r×r)×(r×r)×(r×r)×(r×r)

D

$r^2\times r^2\times r^2\times r^2$r2×r2×r2×r2

E
b

Choose the correct statement:

$\left(r^2\right)^4=r^{2+4}$(r2)4=r2+4

A

$\left(r^2\right)^4=r^{2\times4}$(r2)4=r2×4

B
c

Fill in the box to complete the rule: $\left(r^2\right)^4=r^{\editable{}}$(r2)4=r

Easy
1min

Simplify the following, giving your answer with a positive index: $\left(w^3\right)^4$(w3)4

Easy
< 1min

Express the following in simplified index form:

$\left(j^2\right)^5$(j2)5

Easy
< 1min

Express the following in simplified index form:

$\left(c^9\right)^2$(c9)2

Easy
< 1min
Sign up to access Practice Questions
Get full access to our content with a Mathspace account

Outcomes

7.NS.P.2

Laws of exponents (through observing patterns to arrive at generalisation.) (i) a^m .a^n = a^(m+n) (ii) (a^m)^n = a^mn (iii) a^m / a^n = a^ (m-n) where m - n a member of N

What is Mathspace

About Mathspace