Consider the function $f\left(x\right)=3^x$f(x)=3x.
Calculate $f\left(x+y\right)-f\left(x\right)f\left(y\right)$f(x+y)−f(x)f(y).
What can we conclude about $f\left(x\right)$f(x) for any real valued $x$x?
$f\left(x+y\right)>f\left(x\right)f\left(y\right)$f(x+y)>f(x)f(y)
We cannot conclude anything.
$f\left(x+y\right)=f\left(x\right)f\left(y\right)$f(x+y)=f(x)f(y)
$f\left(x+y\right)
Consider the function $f\left(x\right)=4^x$f(x)=4x.
Consider the function $f\left(x\right)=7^x$f(x)=7x.
Consider the function $f\left(x\right)=2x^2+5x+5$f(x)=2x2+5x+5.