topic badge
CanadaON
Grade 11

Applications of the sine law

Interactive practice questions

Consider the given triangle.

A triangle with vertices labeled A, B, and C is presented. Vertex A is at the top, vertex B is on the lower left, and vertex C is on the lower right. The side opposite vertex A is labeled with the length of 18 units. The angle ABC at vertex B is labeled as 63 degrees, and the angle ACB at vertex C is labeled as 88 degrees, opposite to this angle is side AB labeled with lowercase letter '$c$c'.

a

First, find the value of $\angle BAC$BAC.

b

Find the length of $c$c.

Round your answer to two decimal places.

Easy
3min

Consider the following diagram:

Easy
3min

Use the sine rule to prove that the area of $\triangle ABC$ABC is given by the equation $Area=\frac{a^2\sin B\sin C}{2\sin A}$Area=a2sinBsinC2sinA.

Easy
3min

We want to prove that the area of a parallelogram is the product of two adjacent sides and the sine of the included angle.

Easy
2min
Sign up to access Practice Questions
Get full access to our content with a Mathspace account

Outcomes

11U.D.1.6

Pose problems involving right triangles and oblique triangles in two dimensional settings, and solve these and other such problems using the primary trigonometric ratios, the cosine law, and the sine law (including the ambiguous case)

What is Mathspace

About Mathspace